An Introduction to

Quantum Computing

Ali Almasi

 \boldsymbol{P}

Institut Polytechnique de Paris May 2024

Source: https://thequantuminsider.com/2022/11/09/ibm-quantum-computing/

Disclaimer

*"Those who are not shocked when they first come across quantum theory cannot possibly have understood it."**

–Niels Bohr

* Heisenberg, Werner (1971). Physics and beyond: encounters and conversations. London: G. Allen & Unwin. Source: https://en.wikipedia.org/wiki/Niels_Bohr

\boldsymbol{P} **Prologue:**

T.

 $\overline{\mathbf{O}}$

A Brief History

The First Ideas

Simulating Physics with Computers

Richard P. Fevnman

Department of Physics, California Institute of Technology, Pasadena, California 91107

Received May 7, 1981

- How hard is it "to simulate the quantum mechanical effect" with a computer? The number of variables grows exponentially!
- Feynman suggested:

"Can you do it with a new kind of computer — a quantum computer? Now it turns out, as far as I can tell, that you can simulate this with a quantum system, with quantum computer elements. It's not a Turing machine, but a machine of a different kind."*

Around the same time as Feynman, Y. Manin and P. Benioff also brought up the idea.**

Source: https://en.wikipedia.org/wiki/Richard_Feynman

* Feynman, R.P. Simulating physics with computers. Int J Theor Phys 21, 467–488 (1982).<https://doi.org/10.1007/BF02650179> **Preskill, John. "Quantum computing 40 years later." Feynman Lectures on Computation. CRC Press, 2023. 193-244.

A Timeline (From Feynman to Shor)

- (1985-1988) David Deutsch formalized the notion of a quantum computer.
- (1993) Umesh Vazirani and Ethan Bernstein formulated a problem that a quantum computer could solve with a **superpolynomial** speedup.
- (1996) Lov Grover introduced an algorithm with **quadratic** speedup for the **unstructured search** problem.
- (1997) Daniel Simon showed that a quantum computer could achieve an **exponential** speedup.
- (1999) Peter Shor introduced **efficient** quantum algorithms for solving the discrete logarithm and integer factorization problems.
- And then, it officially started ...

Preskill, John. "Quantum computing 40 years later." Feynman Lectures on Computation. CRC Press, 2023. 193-244.

Is this just a new paradigm in algorithm design?

Quantum Information Theory **Quantum Cryptography**

. . .

Quantum Software Verification

Quantum Machine Learning

Quantum Complexity Theory

Q **Hands-on Experience:What is A Quantum Algorithm?**

And How Does it Work?

Towards a Mathematical Model of *Quantum* **Computation (I)**

- We wish to find an abstract model for the types of computations that can be performed using a quantum hardware.
- Different abstractions have been developed for the classical setting: Turing Machines (Alan Turing, 1936), Lambda Calculus (Alonzo Church, 1936), **Circuit Model (Claude Shannon, 1937)**, . . .

Towards a Mathematical Model of *Quantum* **Computation (I)**

- A circuit consists of three components:
	- Wires
	- Gates
	- (Measurements)

Source: https://en.wikipedia.org/wiki/Adder_(electronics)

O

Towards a Mathematical Model of *Quantum* **Computation (II)**

- A circuit consists of three components:
	- Wires
	- Gates
	- (Measurements)

What is the quantum analogue of each of these components?

Source: https://en.wikipedia.org/wiki/Adder_(electronics)

O

State Space

- Wires represent *bits*: $b \in \{0,1\}$. In hardware, they are systems that can be in two distinct states.
- There are also quantum systems having two different states, e.g. the spin of an electron.
- However, quantum 2-level systems (or qubits) have a strange behavior.
- They can be in 0 and 1 simultaneously! It is called Quantum Superposition!

$$
|\psi\rangle = \alpha |0\rangle + \beta |1\rangle
$$

$$
\alpha, \beta \in \mathbb{C}, |\alpha|^2 + |\beta|^2 = 1,
$$

State Space

O

=Source: A very nice video by Henry Reich (https://www.youtube.com/watch?v=DxQK1WDYI_k)

State Space

O

Quantum Superposition
\n
$$
e^{\cdot} : |f\rangle + |f\rangle
$$
\n
$$
\langle f, \cdot |f, \cdot |f\rangle
$$
\n
$$
\langle f, \cdot |f, \cdot |f, \cdot \rangle
$$
\n
$$
\langle f, \cdot |f, \cdot \rangle + |f, \cdot \rangle
$$
\n
$$
\langle f, \cdot |f, \cdot \rangle + |f, \cdot \rangle
$$
\n
$$
\langle f, \cdot |f, \cdot \rangle + |f, \cdot \rangle
$$

=Source: A very nice video by Henry Reich (https://www.youtube.com/watch?v=DxQK1WDYI_k)

State Space

Postulate 1.2.10 State Space Every isolated physical system is associated with a Hilbert space known as the system's **state space**. The **state vector** (or more succinctly, state) of the system is a unit vector in the corresponding state space $[4]$.

Definition 1.2.11 A qubit is a quantum system whose state space is the twodimensional Hilbert space \mathbb{C}^2 .

Composite Systems

- How about n bits?
- Classically, we have $\mathbf{b} \in \{0,1\}^n$
- Quantumly, the state of an n-qubit system is a unit vector in \mathbb{C}^{2^n}

Now you understand why we said the number of variables in quantum system simulations increases exponentially.

Source: Joseph, Ilon & Shi, Yuan & Porter, M. & Castelli, A. & Geyko, V. & Graziani, Frank & Libby, Stephen & DuBois, J., (2023), Quantum computing for fusion energy science applications, Physics of Plasmas, 30, 010501

Composite Systems

Postulate 1.2.14 Compound Systems The state space of a compound quantum system composed of n individual systems with state spaces V_1, \ldots, V_n is the tensor product of the individual state spaces, $V_1 \otimes \cdots \otimes V_n$. If each component system is in state $|v_i\rangle$, then the joint state of the compound system is $|v_1\rangle \otimes \cdots \otimes |v_n\rangle$ [4].

Time Evolution

- In classical circuits, we have logic gates that perform computation.
- Each gate is a boolean function: $f: \{0,1\}^n \rightarrow \{0,1\}^m$
- Quantum gates should be of the form $U: \mathbb{C}^{2^n} \to \mathbb{C}^{2^m}$ and they should be linear.
- Thus, a gate is basically a matrix.
- Moreover, this matrix should be **unitary**, i.e. its columns form an orthonormal basis (or equivalently, it preserves the inner product (or norm), or equivalently, $U = (U^T)^*$).
- The application of more than one gates can be specified using tensor product..

Source: https://quantum.microsoft.com/en-us/ex plore/concepts/single-qubit-gates

Time Evolution

Time Evolution

Postulate 1.2.13 Time Evolution This postulate may be presented in two ways, which can be proven to be equivalent \mathcal{L} :

• The state of a closed quantum system evolves according to Schrödinger's $equation, i.e.$

$$
i\hbar \frac{d\ket{\psi(t)}}{dt}=H\ket{\psi(t)},
$$

where $\psi(t)$ is the state of system at time t, H is a Hermitian operator known as the system's Hamiltonian, and h is Planck's constant.

• If the state of a closed quantum system at time t_1 is $|\psi(t_1)\rangle$, the state at time $t_2 > t_1$ is determined by

 $|\psi(t_2)\rangle = U |\psi(t_1)\rangle$

where U is a unitary operator that only depends on $t_2 - t_1$.

Measurement

When we measure a quantum state, the outcome is determined probabilistically!

$$
|\psi\rangle = \alpha |0\rangle + \beta |1\rangle \xrightarrow{measure} \begin{cases} |0\rangle \text{ with probability } |\alpha|^2\\ |1\rangle \text{ with probability } |\beta|^2 \end{cases}
$$

- Moreover, the state of the system will change (or **collapse**).
- Note that measuring in the basis ${0,1}$ is not our only option!

Source: https://quantumatlas.umd.edu/entry/me asurement/

Quantum Mechanics Measurement

Postulate 1.2.16 Measurement A measurement on a quantum system is a collection of operators $M = \{M_1, \ldots, M_m\}$ that satisfy $\sum_{i=1}^m M_i^{\dagger} M_i = I$. When a quantum system in the state $|\psi\rangle$ is measured using a collection of measurement operators M , the probability of the measurement outcome being i *is derived by*

$$
p(i) = \left\langle \psi \left| M_i^{\dagger} M_i \right| \psi \right\rangle,
$$

and the system collapses to the state

$$
\frac{M_i|\psi\rangle}{\sqrt{\left\langle\psi\left|M_i^\dagger M_i\right|\psi\right\rangle}}
$$

following the measurement $\vert 4 \vert$.

Quantum Circuits

∩

● They're nothing but applying a bunch of unitaries on some qubits, and then measuring the qubits to extract the result.

Source: https://en.wikipedia.org/wiki/Shor%27s_algorithm

Quantum Circuits

They're nothing but applying a bunch of unitaries on some qubits, and then measuring the qubits to extract the result.

Source: https://en.wikipedia.org/wiki/Shor%27s_algorithm

Let's think about it for a moment:

In the quantum setting, we have things that we didn't have in the classical setting:

- Superposition
- Entanglement (we haven't discussed yet!)

And there are things that we could do classically but we can not do it in the quantum world:

- Copying an arbitrary qubit
- Irreversible computation (?)
- Measurement without destroying the state

Our First Quantum Circuit

O

Remember

Our First Quantum Circuit

On

O

On

Remember

A Quantum Algorithm for the Search Problem

Problem.

Input: Black box access to a function $f: \{0,1\}^n \to \{0,1\}$ together with a promise that $card({x \in {0,1}}^n : f(x) = 1) = t$. **Output:** An $x \in \{0,1\}^n$ such that $f(x) = 1$.

 $\mathbf O$

First, apply Hadamard gates to obtain a uniform superposition of all binary strings:

$$
\ket{\psi}=\ket{+}^{\otimes n}\ket{-}=\frac{1}{\sqrt{2^n}}\sum_{x\in\{0,1\}^n}\ket{x}\ket{-}
$$

 \boldsymbol{H}

 $|1\rangle$

O

 $|\psi_0\rangle = \frac{1}{\sqrt{2^n}} \sum_{x \in \{0,1\}^n} |x\rangle$ Now, consider only the first n qubits: $|G\rangle = \frac{1}{\sqrt{t}} \sum_{x: f(x)=1} |x\rangle,$ $|B\rangle = \frac{1}{\sqrt{2^n - t}} \sum_{x: f(x)=0} |x\rangle,$ $\sin \theta = \sqrt{\frac{t}{2^n}}$ Define: We can write: $|\psi_0\rangle = \sin \theta |G\rangle + \cos \theta |B\rangle$ $|0^n\rangle \left\{ \begin{array}{c} |0\rangle \longrightarrow |H| \ \cdots \ \end{array} \begin{array}{c} |H| \ \cdots \ \end{array} \begin{array}{c} |H| \ \cdots \ \end{array} \begin{array}{c} |0\rangle^{\otimes n}\langle 0|^{\otimes n} - I_n \ \end{array} \right\}$ H + $\overline{\cdots}$ $\frac{1}{\sqrt{H}}$

O

We can write:

O

- $|\psi_0\rangle = \sin \theta |G\rangle + \cos \theta |B\rangle$
- \bullet By applying U_f we perform a reflection over
- By applying the rest of the iteration we perform a reflection over

We can write:

O

 $|\psi_0\rangle = \sin \theta |G\rangle + \cos \theta |B\rangle$

Therefore, after the first iteration, the state is

$$
|\psi_1\rangle = \sin 3\theta \, |G\rangle + \cos 3\theta \, |B\rangle
$$

And after the k'th iteration is

$$
|\psi_k\rangle = \sin(2k+1)\theta |G\rangle + \cos(2k+1)\theta |B\rangle
$$

We can write:

 $|\psi_0\rangle = \sin \theta |G\rangle + \cos \theta |B\rangle$

Therefore, after the first iteration, the state is

$$
|\psi_1\rangle = \sin 3\theta \, |G\rangle + \cos 3\theta \, |B\rangle
$$

And after the k'th iteration is

 $|\psi_k\rangle = \sin(2k+1)\theta |G\rangle + \cos(2k+1)\theta |B\rangle$

If we measure, we obtain a good state with prob.

 $\sin^2(2k+1)\theta$

Final Wordsi
I

 $\frac{1}{1}$

How can I start to learn more?

Resources in English

Books

1. Nielsen MA, Chuang IL. *Quantum Computation and Quantum Information: 10th Anniversary Edition*. Cambridge University Press; 2010.

Lecture Notes

- 1. De Wolf, R. (2019). Quantum computing: Lecture notes. *arXiv preprint arXiv:1907.09415*.
- 2. Gharibian, S. (2021). Introduction to quantum computation. *Paderborn University*.

Review/Expository Articles

- 1. Preskill, J. (2023). Quantum computing 40 years later. In *Feynman Lectures on Computation* (pp. 193-244). CRC Press.
- 2. Montanaro, A. (2016). Quantum algorithms: an overview. *npj Quantum Information*, *2*(1), 1-8.

Resources in Persian

کتاب ھا

(؟)

درس گفتارھا

- <https://salmanbeigi.github.io/lecturenotes.html>.کوانتومی .1111 (.mttps://salmanbeigi.github
- 2. كریمیپور، و. (١۴٠٢) محاسبات و اطلاعات كوانتومی. https://physics.sharif.edu/~vahid/teachingQC.html

مقالات توصیفی/مروری

- .1 محرابیان، ع. (١٣٩٢). الگوریتم جست و جوی گراور. در مجلھ ی ریاضی شریف (دوره ی دوم، شماره ی ھفتم) https://sharif-math-journal.github.io/posts/Series2Issue
	- .2 شور، پیتر. آشنایی با الگوریتم ھای کوانتومی، ترجمھ ی الھام کاشفی. در نشر ریاضی، ١۴(٢)، ۴۴-٣٣
		- .3 ا. (١۴٠٣). نسخھ ی کوانتومی NP. در مجلھ ی ریاضی شریف (دوره ی سوم، شماره ی دوم) https://sharif-math-journal.github.io/posts/Series3Issue2