An Introduction to

Quantum Computing

Ali Almasi

Q

Institut Polytechnique de Paris May 2024

Source: https://thequantuminsider.com/2022/11/09/ibm-quantum-computing/

Disclaimer

"Those who are not shocked when they first come across quantum theory cannot possibly have understood it."^{*}

-Niels Bohr

Source: https://en.wikipedia.org/wiki/Niels_Bohr

* Heisenberg, Werner (1971). Physics and beyond: encounters and conversations. London: G. Allen & Unwin.

• Prologue:

Т

Ó

A Brief History

The First Ideas

Simulating Physics with Computers

Richard P. Feynman

Department of Physics, California Institute of Technology, Pasadena, California 91107

Received May 7, 1981

- How hard is it "to simulate the quantum mechanical effect" with a computer? The number of variables grows exponentially!
- Feynman suggested:

"Can you do it with a **new kind of computer** — a **quantum computer**? Now it turns out, as far as I can tell, that you can simulate this with **a quantum system, with quantum computer elements.** It's not a Turing machine, but a machine of a different kind."*

 Around the same time as Feynman, Y. Manin and P. Benioff also brought up the idea.**

Source: https://en.wikipedia.org/wiki/Richard_Feynman

* Feynman, R.P. Simulating physics with computers. Int J Theor Phys 21, 467–488 (1982). <u>https://doi.org/10.1007/BF02650179</u> **Preskill, John. "Quantum computing 40 years later." Feynman Lectures on Computation. CRC Press, 2023. 193-244.

A Timeline (From Feynman to Shor)

- (1985–1988) David Deutsch formalized the notion of a quantum computer.
- (1993) Umesh Vazirani and Ethan Bernstein formulated a problem that a quantum computer could solve with a **superpolynomial** speedup.
- (1996) Lov Grover introduced an algorithm with **quadratic** speedup for the **unstructured search** problem.
- (1997) Daniel Simon showed that a quantum computer could achieve an **exponential** speedup.
- (1999) Peter Shor introduced **efficient** quantum algorithms for solving the discrete logarithm and integer factorization problems.
- And then, it officially started . . .

Is this just a new paradigm in algorithm design?

Quantum Information Theory Quantum Cryptography

. . .

Quantum Software Verification

Quantum Machine Learning Quantum Complexity Theory

Hands-on Experience: What is A Quantum Algorithm?

And How Does it Work?

Towards a Mathematical Model of Quantum Computation (I)

- We wish to find an abstract model for the types of computations that can be performed using a quantum hardware.
- Different abstractions have been developed for the classical setting: Turing Machines (Alan Turing, 1936), Lambda Calculus (Alonzo Church, 1936), Circuit Model (Claude Shannon, 1937), ...

Source: https://en.wikipedia.org/wiki/Adder_(electronics)

Towards a Mathematical Model of Quantum Computation (I)

- A circuit consists of three components:
 - Wires
 - o Gates
 - o (Measurements)

Source: https://en.wikipedia.org/wiki/Adder_(electronics)

 $\mathbf{\Box}$

Towards a Mathematical Model of Quantum Computation (II)

- A circuit consists of three components:
 - Wires
 - o Gates
 - o (Measurements)

What is the quantum analogue of each of these components?

Quantum Mechanics State Space

- Wires represent *bits*: b ∈ {0,1}.
 In hardware, they are systems that can be in two distinct states.
- There are also quantum systems having two different states, e.g. the spin of an electron.
- However, quantum 2-level systems (or qubits) have a strange behavior.
- They can be in 0 and 1 simultaneously! It is called Quantum Superposition!

$$ert \psi
angle = lpha ert 0
angle + eta ert 1
angle ,$$
 $lpha \in \mathbb{C}, ert lpha ert^2 + ert eta ert^2 = 1,$

Source: https://www.linkedin.com/pulse/brief-introduction-quantum-computing-tanisha-bassan/

State Space

0

Source: A very nice video by Henry Reich (https://www.youtube.com/watch?v=DxQK1WDYI_k)

State Space

Source: A very nice video by Henry Reich (https://www.youtube.com/watch?v=DxQK1WDYI_k)

State Space

Postulate 1.2.10 State Space Every isolated physical system is associated with a Hilbert space known as the system's **state space**. The **state vector** (or more succinctly, **state**) of the system is a unit vector in the corresponding state space [4].

Definition 1.2.11 A **qubit** is a quantum system whose state space is the twodimensional Hilbert space \mathbb{C}^2 .

Composite Systems

- How about n bits?
- Classically, we have $\mathbf{b} \in \{0,1\}^n$
- Quantumly, the state of an n-qubit system is a unit vector in \mathbb{C}^{2^n}

Now you understand why we said the number of variables in quantum system simulations increases exponentially.

Source: Joseph, Ilon & Shi, Yuan & Porter, M. & Castelli, A. & Geyko, V. & Graziani, Frank & Libby, Stephen & DuBois, J. (2023). Quantum computing for fusion energy science applications. Physics of Plasmas. 30. 010501. 10.1063/5.0123765

Composite Systems

Postulate 1.2.14 Compound Systems The state space of a compound quantum system composed of n individual systems with state spaces V_1, \ldots, V_n is the tensor product of the individual state spaces, $V_1 \otimes \cdots \otimes V_n$. If each component system is in state $|v_i\rangle$, then the joint state of the compound system is $|v_1\rangle \otimes \cdots \otimes |v_n\rangle$ [4].

Time Evolution

- In classical circuits, we have logic gates that perform computation.
- Each gate is a boolean function: $f: \{0,1\}^n \to \{0,1\}^m$
- Quantum gates should be of the form $U : \mathbb{C}^{2^n} \to \mathbb{C}^{2^m}$ and they should be linear.
- Thus, a gate is basically a matrix.
- Moreover, this matrix should be **unitary**, i.e. its columns form an orthonormal basis (or equivalently, it preserves the inner product (or norm), or equivalently, $U = (U^T)^*$).
- The application of more than one gates can be specified using tensor product..

Source: https://quantum.microsoft.com/en-us/ex plore/concepts/single-qubit-gates

Time Evolution

Some examples of quantum gates:			Gate Name	Matrix	Diagram
			Pauli-Z	$\begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$	- <u>Z</u> -
Gate Name	Matrix	Diagram ²	Hadamard	$\begin{pmatrix} \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}} \end{pmatrix}$	-H
Pauli-I	$\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$	— <u> </u>	T-gate	$\begin{pmatrix} 1 & 0 \\ 0 & e^{\frac{i\pi}{4}} \end{pmatrix}$	
Pauli-X	$\begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$		Phase (S-gate)	$\begin{pmatrix} 1 & 0 \\ 0 & i \end{pmatrix}$	
Pauli-Y	$egin{pmatrix} 0 & -i \ i & 0 \end{pmatrix}$		Relative Phase Rotation	$egin{pmatrix} 1 & 0 \ 0 & e^{2\pi i heta} \end{pmatrix}$	$-R_{ heta}$

Time Evolution

Postulate 1.2.13 Time Evolution This postulate may be presented in two ways, which can be proven to be equivalent [4]:

• The state of a closed quantum system evolves according to Schrödinger's equation, i.e.

$$i\hbarrac{d\ket{\psi(t)}}{dt}=H\ket{\psi(t)},$$

where $\psi(t)$ is the state of system at time t, H is a Hermitian operator known as the system's Hamiltonian, and \hbar is Planck's constant.

If the state of a closed quantum system at time t₁ is |ψ(t₁)⟩, the state at time t₂ > t₁ is determined by

 $|\psi(t_2)\rangle = U |\psi(t_1)\rangle$

where U is a unitary operator that only depends on $t_2 - t_1$.

Measurement

• When we measure a quantum state, the outcome is determined probabilistically!

$$|\psi\rangle = \alpha \, |0\rangle + \beta \, |1\rangle \xrightarrow{measure} \left\{ \begin{array}{c} |0\rangle \ \ with \ probability \ |\alpha|^2 \\ |1\rangle \ \ with \ probability \ |\beta|^2 \end{array} \right.$$

- Moreover, the state of the system will change (or **collapse**).
- Note that measuring in the basis {0,1} is not our only option!

Source: https://quantumatlas.umd.edu/entry/me asurement/

Postulate 1.2.16 Measurement A measurement on a quantum system is a collection of operators $M = \{M_1, \ldots, M_m\}$ that satisfy $\sum_{i=1}^m M_i^{\dagger} M_i = I$. When a quantum system in the state $|\psi\rangle$ is measured using a collection of measurement operators M, the probability of the measurement outcome being i is derived by

$$p(i) = \left\langle \psi \left| M_i^{\dagger} M_i \right| \psi
ight
angle,$$

and the system collapses to the state

$$rac{M_i \ket{\psi}}{\sqrt{\left\langle \psi \left| M_i^\dagger M_i
ight| \psi
ight
angle}}$$

following the measurement [4].

Quantum Circuits

• They're nothing but applying a bunch of unitaries on some qubits, and then measuring the qubits to extract the result.

Source: https://en.wikipedia.org/wiki/Shor%27s_algorithm

Quantum Circuits

• They're nothing but applying a bunch of unitaries on some qubits, and then measuring the qubits to extract the result.

Source: https://en.wikipedia.org/wiki/Shor%27s_algorithm

Let's think about it for a moment:

In the quantum setting, we have things that we didn't have in the classical setting:

- Superposition
- Entanglement (we haven't discussed yet!)

And there are things that we could do classically but we can not do it in the quantum world:

- Copying an arbitrary qubit
- Irreversible computation (?)
- Measurement without destroying the state

Our First Quantum Circuit

Ο

Remember

Our First Quantum Circuit

On

On

Ο

Remember

A Quantum Algorithm for the Search Problem

Problem.

Input: Black box access to a function $f : \{0,1\}^n \to \{0,1\}$ together with a promise that $card(\{x \in \{0,1\}^n : f(x) = 1\}) = t$. **Output**: An $x \in \{0,1\}^n$ such that f(x) = 1.

Ο

First, apply Hadamard gates to obtain a uniform superposition of all binary strings:

$$|\psi\rangle = |+\rangle^{\otimes n} |-\rangle = \frac{1}{\sqrt{2^n}} \sum_{x \in \{0,1\}^n} |x\rangle |-\rangle$$

H

 $|1\rangle$

Ο

 $|\psi_0\rangle = \frac{1}{\sqrt{2^n}} \sum_{x \in \{0,1\}^n} |x\rangle$ Now, consider only the first n qubits: $|G\rangle = \frac{1}{\sqrt{t}} \sum_{x:f(x)=1} |x\rangle, \qquad |B\rangle = \frac{1}{\sqrt{2^n - t}} \sum_{x:f(x)=0} |x\rangle, \qquad \sin \theta = \sqrt{\frac{t}{2^n}}$ Define: We can write: $|\psi_0\rangle = \sin\theta |G\rangle + \cos\theta |B\rangle$ H \cdots H

O

We can write:

- $|\psi_0
 angle = \sin\theta |G
 angle + \cos\theta |B
 angle$
- By applying U_f we perform a reflection over
- By applying the rest of the iteration we perform a reflection over

We can write:

O

 $|\psi_0\rangle = \sin\theta \,|G\rangle + \cos\theta \,|B\rangle$

Therefore, after the first iteration, the state is

 $|\psi_1\rangle = \sin 3\theta |G\rangle + \cos 3\theta |B\rangle$

And after the k'th iteration is

$$|\psi_k\rangle = \sin(2k+1)\theta |G\rangle + \cos(2k+1)\theta |B\rangle$$

We can write:

 $|\psi_0\rangle = \sin\theta |G\rangle + \cos\theta |B\rangle$

Therefore, after the first iteration, the state is

$$|\psi_1\rangle = \sin 3\theta |G\rangle + \cos 3\theta |B\rangle$$

And after the k'th iteration is

 $|\psi_k\rangle = \sin(2k+1)\theta |G\rangle + \cos(2k+1)\theta |B\rangle$

If we measure, we obtain a good state with prob.

 $\sin^2(2k+1)\theta$

Final Words How car

How can I start to learn more?

Resources in English

Books

1. Nielsen MA, Chuang IL. *Quantum Computation and Quantum Information: 10th Anniversary Edition*. Cambridge University Press; 2010.

Lecture Notes

- 1. De Wolf, R. (2019). Quantum computing: Lecture notes. *arXiv preprint arXiv:1907.09415*.
- 2. Gharibian, S. (2021). Introduction to quantum computation. *Paderborn University*.

Review/Expository Articles

- 1. Preskill, J. (2023). Quantum computing 40 years later. In *Feynman Lectures on Computation* (pp. 193-244). CRC Press.
- 2. Montanaro, A. (2016). Quantum algorithms: an overview. *npj Quantum Information*, 2(1), 1-8.

Resources in Persian

كتابها

(?)

درسگفتارها

- ۲. بیگی، س. (۱۳۹۱). محاسبات کواننومی. https://salmanbeigi.github.io/lecturenotes.html
- 2. كريمى پور، و. (۱۴۰۲) محاسبات و اطلاعات كوانتومى. https://physics.sharif.edu/~vahid/teachingQC.html

مقالات توصيفي مرورى

- [. محرابیان، ع. (۱۳۹۲). الگوریتم جست وجوی گراور. در مجله ی ریاضی شریف (دوره ی دوم، شماره ی هفتم) https://sharif-math-journal.github.io/posts/Series2Issue
 - شور، پیتر. آشنایی با الگوریتمهای کوانتومی، ترجمهی الهام کاشفی. در نشر ریاضی، ۱۴ (۲)، ۳۳-۴۴
 - I. (۱۴۰۳). نسخهی کوانتومی NP. در مجلهی ریاضی شریف (دور می سوم، شمار می دوم) https://sharif-math-journal.github.io/posts/Series3Issue2