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Introduction



Iterative Methods in Optimization

• Make a guess, and iterate on it until you converge!
• It is a quite old method:

◦ Heron (60 AD) described an iterative method for finding the
square root.

◦ Iranian mathematician Jamshid Kashi (1380-1429) used an
iterative method to compute sin 1◦ to a high precision.

◦ Newton used an iterative method for finding the root of a
polynomial.

• Iterative methods are widely used today:
◦ Gradient descent, hill climbing, Newton’s method,

quasi-Newton methods, etc.

• They can be more efficient than the direct methods.



Quantum State Discrimination

State Discrimination
Alice possesses an ensemble E = {(ρj, pj)}j∈[N]. She picks a state ρ?
according to the distribution (pj)j∈[N] and sends it to Bob. Bob’s task
is to guess i ∈ [N] such that ρi = ρ?.

• If the states are not mutually orthogonal, then one can not
perfectly discriminate.

• In the case of imperfect distinguishability, different strategies
might be considered:

◦ minimum-error, unambiguous, maximum-confidence, etc.

• The problem has applications in quantum information theory,
quantum cryptography and quantum query complexity.



A Quick Recap on SDPs (Based on [SC23])



Semidefinite Programs

• Semidefinite Programs are generalizations of linear programs:
constraint optimization problems

◦ in Hermitian variables,
◦ with a linear objective function tr(AX), for some Hermitian

operator A,
◦ and a number of linear equality and inequality constraints
Φi(X) = Bi and Γj(X) ⩽ Cj, whereΦi, Γj are linear hermiticity
preserving maps, and Bi, Cj are Hermitian.

SDP
maximize : tr(AX)
subject to :Φi(X) = Bi i ∈ [m],

Γj(X) ⩽ Cj j ∈ [n].

• SDP power: many problems can be cast as SDPs!



Duality

• We already introduced the Primal problem. The Dual is also an
optimization problem providing an alternative formulation of
the primal.

• Every feasible point of the Dual, provides an upper-bound on
the optimal value of the primal.

Primal SDP
maximize : tr(AX)
subject to :Φi(X) = Bi i ∈ [m],

Γj(X) ⩽ Cj j ∈ [n].

Dual SDP

minimize :
m∑

i=1

tr(YiBi) +

n∑
j=1

tr(ZjCj)

subject to : A −

m∑
i=1

Φ∗
i (Yi) −

n∑
j=1

Γ∗j
(

Zj
)
= 0,

Zj ⩾ 0 j ∈ [n].

• The optimal value of the dual is always an upper-bound of the
optimal value of the primal (Weak Duality).



Duality

Primal SDP
maximize : tr(AX)
subject to :Φi(X) = Bi i ∈ [m],

Γj(X) ⩽ Cj j ∈ [n].

Dual SDP

minimize :
m∑

i=1

tr(YiBi) +

n∑
j=1

tr(ZjCj)

subject to : A −

m∑
i=1

Φ∗
i (Yi) −

n∑
j=1

Γ∗j
(

Zj
)
= 0,

Zj ⩾ 0 j ∈ [n].

• Under some mild conditions the optimal value of the primal
and the dual are equal (Strong Duality).

◦ If the primal (dual) has finite optimal value and it is strictly
feasible, then the strong duality holds.

• Strong duality holds for almost all the SDPs arising in QIT.
• When the strong duality holds, we have Complementary

Slackness:

Z∗
j
[

Cj − Γj (X∗)
]
= 0 for j = 1, . . . , n



State Discrimination Revisited



State Antidiscrimination

State Antidiscrimination
Alice possesses an ensemble E = {(ρj, pj)}j∈[N]. She picks a state ρ?
according to the distribution (pj)j∈[N] and sends it to Bob. Bob’s task
is to guess i ∈ [N] such that ρi ̸= ρ?.

• Antidiscrimination is weaker than
the discrimination.

• It turned out to be useful in proving
ψ−ontology theorems [Lei14].
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A More General Setting: Quantum Guessing Games

Quantum Guessing Game
Alice possesses an ensemble E = {(ρj, pj)}j∈[N], and picks a state
ρ? according to the distribution (pj)j∈[N] and sends it to Bob. If Bob
guesses that ρ? is ρi and the true index of ρ? is j, then Bob receives
the reward f(i, j) ∈ R. Bob’s task is to maximize his expected reward.

• The problem can be cast as a state discrimination [CHT22].
• Many problems can be seen as the special cases of the

quantum guessing games [CHT22; MSU23]:
◦ State Discrimination (f(i, j) = δi,j), State Antidiscrimination

(f(i, j) = 1 − δi,j), Set Discrimination, etc.



Formulation of the Problem As a SDP

A quantum guessing game can be formulated as the following SDP:

Primal SDP

maximize : RM =

L∑
i=1

N∑
j=1

f(i, j) tr(Miρ̃j)

subject to :
N∑

k=1

Mk = 1,

Mk ⩾ 0 k ∈ [L],

where ρ̃k
def
== pkρk.



Formulation of the Problem As a SDP

In particular, the SDP formulation of the state discrimination is:

Primal SDP

maximize : PM =

N∑
i=1

tr(Miρ̃i)

subject to :
N∑

k=1

Mk = 1,

Mk ⩾ 0 k ∈ [N].

Dual SDP
minimize : tr(Y)

subject to : Y ⩾ ρ̃i i ∈ [N]

• Primal and Dual are both strictly feasible (Strong Duality).



Strategies for Solving the State Discrimination Problem
There are typically two general strategies:

• Finding the optimal value:
◦ Analytically: An analytical solution is only known for few cases:

- 2-state ensemble: Popt =
1
2 + 1

2∥ρ̃1 − ρ̃2∥1
- equiprobable qubits [DT10], geometrically uniform states

[EMV04], mirror-symmetric states [And+02].
◦ Numerically: Using the SDP solvers.

• Using sub-optimal measurements with an acceptable degree
of quality:

◦ Pretty good (bad, ugly) measurements:

Mi = Σ
−1/2ρ̃iΣ

−1/2, where Σ
def
==

N∑
k=1

ρ̃k.

◦ Belavkin Measurements: Having an array of weight matrices
{wk ∈ Pos(Crankρk) : k ∈ [N]} and writing ρi = ψiψ

†
i , define

Mi
def
== Σw

− 1
2ψiwiψi

†Σw
− 1

2 , where Σw
def
==

N∑
i=1

ψiwiψi
†.



Optimality Conditions

Using the complementary slackness, we can obtain the following
necessary and sufficient condition for an optimal measurement.

Theorem ([Hol73; YKL75])
A measurement M = {Mk}k∈[N] is optimal iff there exists an operator
G ∈ Pos(Cd) such that GMk = ρ̃kMk and G ⩾ ρ̃k for all k ∈ [N].

There is also an optimality condition for the Belavkin measurement.

Theorem ([BM87])
A measurement M = {Mk}k∈[N] is optimal iff it is identical to a
Belavkin measurement with weights {wk}k∈[N] such that there exist

a positive c satisfying pkYkwk = cwk and pkYk ⩽ c1, where Yk
def
==

ψ
†
kΣ

− 1
2

w ψk, for all k ∈ [N].



Towards an Iterative Algorithm



An Algorithm by Ježek et al. [JŘF02]

Theorem
A measurement M = {Mk}k∈[N] is optimal iff there exists an operator
G ∈ Pos(Cd) such that GMk = ρ̃kMk and G ⩾ ρ̃k for all k ∈ [N].

Mk = G−1ρ̃kMkρ̃kG−1

If we take G to be (
∑N

i=1 ρ̃iMiρ̃i)
1/2

, we have

Mk =

( N∑
i=1

ρ̃iMiρ̃i

)−1/2

ρ̃kMkρ̃k

( N∑
i=1

ρ̃iMiρ̃i

)−1/2

.

JFR iteration

M(+)
k

def
==

( N∑
i=1

ρ̃iMiρ̃i

)−1/2

ρ̃kMkρ̃k

( N∑
i=1

ρ̃iMiρ̃i

)−1/2



An Algorithm by Ježek et al. [JŘF02]

JFR iteration

M(+)
k

def
==

( N∑
i=1

ρ̃iMiρ̃i

)−1/2

ρ̃kMkρ̃k

( N∑
i=1

ρ̃iMiρ̃i

)−1/2

They observe that:
"In the many tests we did a monotonic convergence to the
true global maximum of the success rate always had been
observed, though we have no analytic proof of this behavior
in general."



A Modification by Nakashira et al. [NKU15]

They proposed iterating on weights instead of measurements.

• Advantages: lower computational costs, accelerating the
convergence speed

Theorem
A measurement M = {Mk}k∈[N] is optimal iff it is identical to a
Belavkin measurement with weights {wk}k∈[N] such that there ex-
ist a positive c satisfying pkYkwk = cwk and pkYk ⩽ c1, where
Yk

def
== ψ†

kΣ
− 1

2
w ψk, for all k ∈ [N].

NKU Iteration

w(+)
k = p2

kYkwkYk



A More General Framework: Directional Iterations [Tys10]

For an ensemble E = {ρ̃k}k∈[N] define the semidefinite inner
product ⟨·, ·⟩E on the space of [L(Cd)]

N as

⟨E, F⟩E
def
==

N∑
i=1

tr(E†
i Fiρ̃i),

for E = {Ek}k∈[N] and F = {Fk}k∈[N].

• For a measurement M = {Mk}k∈[N], where Mk = E†
k Ek,

PM = ∥E∥E.



A More General Framework: Directional Iterations [Tys10]

⟨E, F⟩E
def
==

N∑
i=1

tr(E†
i Fiρ̃i),

Maximal Seminorm Problem
Let V be a linear (real or complex) space equipped with a semidefinite
inner product ⟨·, ·⟩ : V ×V → V , and consider the seminorm induced
by this semidefinite inner product on V . Let S ⊆ V . Find an element
of S which is maximal with respect to this seminorm.

VE
def
==

{
E ∈ L(Cd)

L
| ∥E∥E <∞}

,

SE
def
== {E ∈ VE |

L∑
i=1

E†
i Ei = 1d}

Popt = max
s∈SE

∥s∥2
E



A More General Framework: Directional Iterations [Tys10]

Directional Iteration
A directional iterate of v ∈ V , is an element v(+) ∈ S such that

v(+) = argmax
s∈S

Re⟨s, v⟩.

We immediately conclude that

Theorem ∥∥∥v(+)
∥∥∥2

⩾ ∥v∥2 +
∥∥∥v(+) − v

∥∥∥2
.

Tyson showed that the JFR iteration is a dirctional iteration.



The Convergence of NKU in the Case of Linearly
Independent Pure States [NKU15]

• Note that from the previous theorem, it is implied that

S(r) =

N∑
k=1

tr
[

E(r+1)
k − E(r)

k

]† [
E(r+1)

k − E(r)
k

]
ρ̃k,

converges to zero when r → ∞.
• When we have pure states, weights are positive numbers, as

well as Yks (Yk = ψ†
kΣ

− 1
2

w ψk). Thus, many things commute!

• One can use the linear independence to show that pkY(r)
k tends

to 1 when r → ∞.
• Because of this convergence, we have

PM(r) ⩾ (1 − ϵ)2 Popt .



A Fixed-point Theorem

Let T be the set-valued directional iteration, and consider the
sequence (E(r))

∞
r=1, where E(r+1) ∈ T(E(r)).

Proposition

Let (E(r))
∞
r=1 be a sequence obtained by consecutively applying the

directional iteration to an arbitrary E(0) ∈ VG. Then, every limit-point
of this sequence is a fixed point of T.

The proof is by using the continuity of the semidefinite
inner-product and the induced seminorm.



Future Steps



Future Steps

• Our ultimate goal is to prove convergence in the most general
case. A possible next step is to prove that a fixed-point is
optimal using the previously mentioned optimality conditions.

• A more ambitious goal: Is there a fundamental unifying
theory? There are other similar iterative algorithms whose
convergence has not yet been shown.

• Comparing the time and space complexity of the iterative
method with the complexity of solving the SDP.



Thank you all for your attention!
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