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Entropy and Information



Von Neumann Entropy

Definition
The entropy H(A)ρ of a state ρA ∈ D (HA) is defined as follows:

H(A)ρ ≡ − Tr {ρA log ρA} .

Some remarks:

• Suppose that the spectral decomposition of a state ρA is

ρA =
∑

x
pX(x)|x⟩ ⟨x|A .

Then H(A)ρ = H(X).
• H(ρ) ≥ 0.
• minρA H(ρ) = 0 and maxρA H(ρ) = log d.
• H(ρ) is concave and it is invariant under isometries.
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Joint Quantum Entropy

Definition
For a density operator ρAB ∈ D (HA ⊗ HB) living in a bipartite system
AB, we define:

H(AB)ρ ≡ − Tr {ρAB log ρAB}

Some remarks:

• For a pure state |ϕ⟩AB, H(A)ϕ = H(B)ϕ, while H(AB)ϕ = 0.

• H (ρA ⊗ σB) = H (ρA) + H (σB).
• For a state of the form ρXB ≡

∑
x pX(x)|x⟩ ⟨x|X ⊗ ρx

B , the
joint entropy H(XB)ρ is as follows:

H(XB)ρ = H(X) +
∑

x
pX(x)H (ρx

B) .
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Conditional Quantum Entropy and Mutual Information

Definition
For ρAB ∈ D (HA ⊗ HB), the conditional quantum entropy is defined as:

H(A | B)ρ ≡ H(AB)ρ − H(B)ρ.

Some remarks:

• For a state of the form ρXB ≡
∑

x pX(x)|x⟩ ⟨x|X ⊗ ρx
B ,

H(B | X)ρ =
∑

x pX(x)H (ρx
B) .

• The conditional entropy can be negative!

Definition
The quantum mutual information of a state ρAB ∈ D (HA ⊗ HB) is
defined as:

I(A; B)ρ ≡ H(A)ρ + H(B)ρ − H(AB)ρ.
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Quantum Relative Entropy

Definition
The quantum relative entropy D(ρ∥σ) between a density operator
ρ ∈ D(H) and a positive semi-definite operator σ ∈ L(H) is defined as
follows:

D(ρ∥σ) ≡ Tr{ρ[log ρ − log σ]}

if the following support condition is satisfied

supp(ρ) ⊆ supp(σ),

and it is defined to be equal to +∞ otherwise.

Theorem
For any two density operators ρ, σ ∈ D(H),

D(ρ∥σ) ≥ 0,

and D(ρ∥σ) = 0 if and only if ρ = σ.
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Quantum Evolution



Quantum Evolutions

What is the most general formulation of quantum evolution?

• A quantum evolution Φ should be a linear map acting on the space
of (density) matrices.

• A quantum evolution should take quantum states to quantum states.
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Quantum Channels

Definition
Let HA, HB be Hilbert spaces. Then a linear map
Φ : L (HA) → L (HB), is a quantum channel from system A to system
B if it satisfies

1. Tr[X] = Tr[Φ(X)] for all X ∈ L (HA) .

2. For any additional Hilbert space HC and bipartite operator
XAC ∈ L (HA ⊗ HC) with XAC ≥ 0 we have

(Φ ⊗ IC) (XAC) ≥ 0.
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Kraus-Choi Representation of Quantum Channels

Theorem
Let Φ : L(A) → L(B) be a linear map. Then the following are
equivalent.

1. Φ is a quantum channel.
2. (Kraus representation) There exist matrices Ki ∈ L(A, B) with∑

i K
†
i Ki = IA such that Φ(X) =

∑
i KiXK†

i .

3. Define the Choi matrix C ∈ L(AB) of the map Φ by

CΦ :=


Φ(|0⟩⟨0|) Φ(|0⟩⟨1|) . . . Φ(|0⟩⟨d − 1|)

Φ(|1⟩⟨0|) Φ(|1⟩⟨1|) . . .
...

...
... . . . ...

Φ(|d − 1⟩⟨0|) . . . . . . Φ(|d − 1⟩⟨d − 1|)

 .

Then CAB ≥ 0 and TrB [CAB] = IA.
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Examples of Quantum Channels

• Quantum bit-flip channel: For p ∈ [0, 1] :

ρ → (1 − p)ρ + pXρX

• Quantum erasure channel: For p ∈ [0, 1] :

ρ → (1 − p)ρ + p|e⟩⟨e|,

where ⟨e|ρ|e⟩ = 0 for all inputs ρ.
• Unitary mixture channel: For unitary Ui’s and a probability

distribution {pi}:

Φ(X) =
n∑

i=1
piUiXU†

i

• Partial trace.
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Quantum Channels as Generalizations of Classical Channels

Any discrete channel with the set of conditional distributions pY|X(y | x)
can be implemented by a quantum channel with the following Kraus
operators {√

pY|X(y | x)|y⟩⟨x|
}

x,y
.
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Monotonicity of Quantum Relative Entropy

Theorem
Let ρ ∈ D(H), σ ∈ L(H) be positive semi-definite, and
N : L(H) → L (H′) be a quantum channel.

D(ρ∥σ) ≥ D(N (ρ)∥N (σ)).
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Schumacher’s Quantum Data
Compression



Shannon’s Source Coding Theorem

For an i.i.d source X, if we denote a sequence of N outputs of this source
by X⊗N, we have:

For all δ ∈ (0, 1),

1
NHδ

(
X⊗N)

−→
N→+∞

H(X).

What if we have a quantum source?
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Quantum Setting

A source: A Hilbert space H and a density matrix ρ over H.

ρ =
∑

x
p(x)|x⟩⟨x|

A compression scheme of rate R:

• The compression operation: a quantum operation Cn, taking states
in H⊗n to states in a 2nR-dimensional state space, the compressed
space.

• The decompression operation: takes states in the compressed space
to states in the original state space.

Our criteria for reliability: In the limit of large n the entanglement fidelity
F (ρ⊗n, Dn ◦ Cn) should tend towards one.

Fidelity F(ρ, σ) between density matrices ρ and σ is defined as

F(ρ, σ) ≡ ∥√
ρ
√

σ∥2
1.
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Typical Subspaces

An ϵ-typical sequence:∣∣∣∣1
n log

(
1

p (x1) p (x2) . . . p (xn)

)
− S(ρ)

∣∣∣∣ ≤ ϵ.

An ϵ-typical state: A state |x1⟩ |x2⟩ . . . |xn⟩ for which the sequence
x1, x2, . . . , xn is ϵ-typical.
The ϵ-typical subspace: The subspace T(n, ϵ), spanned by all ϵ-typical
states, |x1⟩ . . . |xn⟩.
The projector onto the ϵ-typical subspace: The projector P(n, ϵ) which is
defined as:

P(n, ϵ) =
∑

x is ϵ-typical
|x1⟩ ⟨x1| ⊗ |x2⟩ ⟨x2| ⊗ . . . |xn⟩ ⟨xn|
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Typical Subspace Theorem

Theorem

1. Fix ϵ > 0. Then for any δ > 0, for sufficiently large n,

tr
(
P(n, ϵ)ρ⊗n)

≥ 1 − δ.

2. For any fixed ϵ > 0 and δ > 0, for sufficiently large n, the dimension
|T(n, ϵ)| = tr(P(n, ϵ)) of T(n, ϵ) satisfies:

(1 − δ)2n(S(ρ)−ϵ) ≤ |T(n, ϵ)| ≤ 2n(S(ρ)+ϵ).

3. Let S(n) be a projector onto any subspace of H⊗n of dimension at
most 2nR, where R < S(ρ) is fixed. Then for any δ > 0, and for
sufficiently large n,

tr
(
S(n)ρ⊗n)

≤ δ.
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Quantum Data Compression

Theorem
Suppose that ρA is the density operator corresponding to a quantum
information source. Then the quantum entropy H(A)ρ is equal to the
quantum data compression limit of ρ.

• Main idea for quantum data compression: measure typical subspace.
Successful with probability 1 − ε.

• If successful, perform a unitary that rotates typical subspace to
space of dimension ≤ 2n[H(ρ)+δ] (n[H(ρ) + δ] qubits).

• Send qubits to Bob, who then undoes the compression unitary.
• Scheme is guaranteed to meet the fidelity criterion.
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Holevo Bound



Accessible Information

• Alice prepares an ensemble E ≡ {pX(x), ρx}.
• Bob performs a POVM {Λy}.
• Bob wants to retrieve as much information as possible about the

random variable X.
• Bob can choose which measurement he would like to perform.
• It would be good for Bob to perform the measurement that

maximizes his information about X.

Definition
The accessible information Iacc (E) of the ensemble E is defined as:

Iacc (E) ≡ max
{Λy}

I(X; Y),

where the marginal density pX(x) is that from the ensemble and the
conditional density pY|X(y | x) = Tr {Λyρx}.
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Holevo Theorem

Definition
The Holevo information of an ensemble E is defined as:

χ(E) ≡ H (ρ) −
∑

x
pX(x)H (ρx) .

Theorem

Iacc (E) ≤ χ(E).

17



Conclusion



Conclusion

• We can define information theoretic quantities in the quantum realm
analogous to the classical definitions, but some radical departures
from the classical notions may arise.

• We need to generalize the notion of quantum evolution to be able to
capture the notion of noisiness of an evolution.

• In quantum setting, entropy still governs the ultimate limit of the
compression rate.

18



Thank you!
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