

Introduction to Quantum Information Theory

BASED ON Wilde, MM. (Cambridge University Press, Cambridge) (2013).

Ali Almasi

Institut Polytechnique de Paris

Entropy and Information

Von Neumann Entropy

Definition

The entropy $H(A)_{\rho}$ of a state $\rho_A \in \mathcal{D}(\mathcal{H}_A)$ is defined as follows:

 $H(A)_{\rho} \equiv -\operatorname{Tr} \left\{ \rho_A \log \rho_A \right\}.$

Von Neumann Entropy

Definition

The entropy $H(A)_{\rho}$ of a state $\rho_A \in \mathcal{D}(\mathcal{H}_A)$ is defined as follows:

$$H(A)_{\rho} \equiv -\operatorname{Tr} \left\{ \rho_A \log \rho_A \right\}.$$

Some remarks:

- Suppose that the spectral decomposition of a state ρ_A is

$$\rho_A = \sum_{x} p_X(x) |x\rangle \langle x|_A .$$

Then $H(A)_{\rho} = H(X)$.

- $H(\rho) \geq 0.$
- $\min_{\rho_A} H(\rho) = 0$ and $\max_{\rho_A} H(\rho) = \log d$.
- H(p) is concave and it is invariant under isometries.

Joint Quantum Entropy

Definition

For a density operator $\rho_{AB} \in \mathcal{D}(\mathcal{H}_A \otimes \mathcal{H}_B)$ living in a bipartite system *AB*, we define:

 $H(AB)_{\rho} \equiv -\operatorname{Tr} \left\{ \rho_{AB} \log \rho_{AB} \right\}$

Joint Quantum Entropy

Definition

For a density operator $\rho_{AB} \in \mathcal{D}(\mathcal{H}_A \otimes \mathcal{H}_B)$ living in a bipartite system *AB*, we define:

$$H(AB)_{\rho} \equiv -\operatorname{Tr} \left\{ \rho_{AB} \log \rho_{AB} \right\}$$

Some remarks:

- For a pure state $|\phi\rangle_{AB}$, $H(A)_{\phi} = H(B)_{\phi}$, while $H(AB)_{\phi} = 0$.
- $H(\rho_A \otimes \sigma_B) = H(\rho_A) + H(\sigma_B).$
- For a state of the form ρ_{XB} ≡ Σ_x p_X(x)|x⟩ ⟨x|_X ⊗ ρ^x_B, the joint entropy H(XB)_ρ is as follows:

$$H(XB)_{\rho} = H(X) + \sum_{x} p_X(x)H(\rho_B^x).$$

Conditional Quantum Entropy and Mutual Information

Definition

For $\rho_{AB} \in \mathcal{D}(\mathcal{H}_A \otimes \mathcal{H}_B)$, the conditional quantum entropy is defined as:

$$H(A \mid B)_{\rho} \equiv H(AB)_{\rho} - H(B)_{\rho}.$$

Conditional Quantum Entropy and Mutual Information

Definition

For $\rho_{AB} \in \mathcal{D}(\mathcal{H}_A \otimes \mathcal{H}_B)$, the conditional quantum entropy is defined as:

$$H(A \mid B)_{\rho} \equiv H(AB)_{\rho} - H(B)_{\rho}.$$

Some remarks:

- For a state of the form $\rho_{XB} \equiv \sum_{x} p_X(x) |x\rangle \langle x|_X \otimes \rho_B^x$, $H(B \mid X)_{\rho} = \sum_{x} p_X(x) H(\rho_B^x)$.
- The conditional entropy can be negative!

Conditional Quantum Entropy and Mutual Information

Definition

For $\rho_{AB} \in \mathcal{D}(\mathcal{H}_A \otimes \mathcal{H}_B)$, the conditional quantum entropy is defined as:

$$H(A \mid B)_{\rho} \equiv H(AB)_{\rho} - H(B)_{\rho}.$$

Some remarks:

- For a state of the form $\rho_{XB} \equiv \sum_{x} p_X(x) |x\rangle \langle x|_X \otimes \rho_B^x$, $H(B \mid X)_{\rho} = \sum_{x} p_X(x) H(\rho_B^x)$.
- The conditional entropy can be negative!

Definition

The quantum mutual information of a state $\rho_{AB} \in \mathcal{D}(\mathcal{H}_A \otimes \mathcal{H}_B)$ is defined as:

$$I(A;B)_
ho\equiv H(A)_
ho+H(B)_
ho-H(AB)_
ho.$$

Quantum Relative Entropy

Definition

The quantum relative entropy $D(\rho \| \sigma)$ between a density operator $\rho \in D(\mathcal{H})$ and a positive semi-definite operator $\sigma \in \mathcal{L}(\mathcal{H})$ is defined as follows:

$$D(\rho \| \sigma) \equiv \mathsf{Tr}\{\rho[\log \rho - \log \sigma]\}$$

if the following support condition is satisfied

 $\operatorname{supp}(\rho) \subseteq \operatorname{supp}(\sigma),$

and it is defined to be equal to $+\infty$ otherwise.

Theorem

For any two density operators $\rho, \sigma \in \mathcal{D}(\mathcal{H})$,

 $D(\rho \| \sigma) \ge 0,$

and $D(\rho \| \sigma) = 0$ if and only if $\rho = \sigma$.

Quantum Evolution

What is the most general formulation of quantum evolution?

- A quantum evolution Φ should be a linear map acting on the space of (density) matrices.
- A quantum evolution should take quantum states to quantum states.

Definition

Let $\mathcal{H}_A, \mathcal{H}_B$ be Hilbert spaces. Then a linear map $\Phi : \mathcal{L}(\mathcal{H}_A) \to \mathcal{L}(\mathcal{H}_B)$, is a quantum channel from system A to system B if it satisfies

- 1. $\operatorname{Tr}[X] = \operatorname{Tr}[\Phi(X)]$ for all $X \in \mathcal{L}(\mathcal{H}_A)$.
- 2. For any additional Hilbert space \mathcal{H}_C and bipartite operator $X_{AC} \in \mathcal{L}(\mathcal{H}_A \otimes \mathcal{H}_C)$ with $X_{AC} \ge 0$ we have

 $(\Phi \otimes \mathcal{I}_C)(X_{AC}) \geq 0.$

Kraus-Choi Representation of Quantum Channels

Theorem

Let $\Phi : \mathcal{L}(A) \to \mathcal{L}(B)$ be a linear map. Then the following are equivalent.

- 1. Φ is a quantum channel.
- 2. (Kraus representation) There exist matrices $K_i \in \mathcal{L}(A, B)$ with $\sum_i K_i^{\dagger} K_i = I_A$ such that $\Phi(X) = \sum_i K_i X K_i^{\dagger}$.
- 3. Define the Choi matrix $C \in \mathcal{L}(AB)$ of the map Φ by

$$C_{\Phi} := egin{pmatrix} \Phi(|0
angle\langle 0|) & \Phi(|0
angle\langle 1|) & \dots & \Phi(|0
angle\langle d-1|) \ \Phi(|1
angle\langle 0|) & \Phi(|1
angle\langle 1|) & \dots & dots \ dots & dots & \ddots & dots \ dots & dots & dots & \ddots & dots \ \Phi(|d-1
angle\langle 0|) & \dots & \dots & \Phi(|d-1
angle\langle d-1|) \end{pmatrix}$$

Then $C_{AB} \ge 0$ and $\operatorname{Tr}_{B}[C_{AB}] = I_{A}$.

Examples of Quantum Channels

• Quantum bit-flip channel: For $p \in [0, 1]$:

$$ho
ightarrow (1-p)
ho + pX
ho X$$

• Quantum erasure channel: For $p \in [0, 1]$:

$$ho
ightarrow (1-p)
ho + p|e\rangle\langle e|,$$

where $\langle e | \rho | e \rangle = 0$ for all inputs ρ .

Unitary mixture channel: For unitary U_i's and a probability distribution {p_i}:

$$\Phi(X) = \sum_{i=1}^{n} p_i U_i X U_i^{\dagger}$$

Partial trace.

Any discrete channel with the set of conditional distributions $p_{Y|X}(y \mid x)$ can be implemented by a quantum channel with the following Kraus operators

$$\left\{\sqrt{p_{Y|X}(y \mid x)}|y\rangle\langle x|\right\}_{x,y}$$

Theorem

Let $\rho \in D(\mathcal{H}), \sigma \in \mathcal{L}(\mathcal{H})$ be positive semi-definite, and $\mathcal{N} : \mathcal{L}(\mathcal{H}) \rightarrow \mathcal{L}(\mathcal{H}')$ be a quantum channel.

 $D(\rho \| \sigma) \ge D(\mathcal{N}(\rho) \| \mathcal{N}(\sigma)).$

Schumacher's Quantum Data Compression

For an i.i.d source X, if we denote a sequence of N outputs of this source by $X^{\otimes N}$, we have:

For all $\delta \in (0, 1)$, $\frac{1}{N} H_{\delta} \left(X^{\otimes N} \right) \xrightarrow[N \to +\infty]{} H(X).$

What if we have a quantum source?

Quantum Setting

A source: A Hilbert space \mathcal{H} and a density matrix ρ over \mathcal{H} .

$$ho = \sum_{x} p(x) |x\rangle \langle x|$$

A compression scheme of rate R:

- The compression operation: a quantum operation Cⁿ, taking states in H^{⊗n} to states in a 2^{nR}-dimensional state space, the compressed space.
- The decompression operation: takes states in the compressed space to states in the original state space.

Our criteria for reliability: In the limit of large *n* the entanglement fidelity $F(\rho^{\otimes n}, \mathcal{D}^n \circ \mathcal{C}^n)$ should tend towards one.

Fidelity $F(\rho, \sigma)$ between density matrices ρ and σ is defined as

$$F(\rho,\sigma) \equiv \|\sqrt{\rho}\sqrt{\sigma}\|_1^2.$$

An ϵ -typical sequence:

$$\left|\frac{1}{n}\log\left(\frac{1}{p(x_1)p(x_2)\dots p(x_n)}\right)-S(\rho)\right|\leq\epsilon.$$

An ϵ -typical state: A state $|x_1\rangle |x_2\rangle \dots |x_n\rangle$ for which the sequence x_1, x_2, \dots, x_n is ϵ -typical.

The ϵ -typical subspace: The subspace $T(n, \epsilon)$, spanned by all ϵ -typical states, $|x_1\rangle \dots |x_n\rangle$.

The projector onto the ϵ -typical subspace: The projector $P(n, \epsilon)$ which is defined as:

$$P(n,\epsilon) = \sum_{x \text{ is } \epsilon \text{-typical}} |x_1\rangle \langle x_1| \otimes |x_2\rangle \langle x_2| \otimes \ldots |x_n\rangle \langle x_n|$$

Typical Subspace Theorem

Theorem

1. Fix $\epsilon > 0$. Then for any $\delta > 0$, for sufficiently large n,

$$\operatorname{tr}\left(P(n,\epsilon)\rho^{\otimes n}\right) \geq 1-\delta.$$

2. For any fixed $\epsilon > 0$ and $\delta > 0$, for sufficiently large n, the dimension $|T(n,\epsilon)| = tr(P(n,\epsilon))$ of $T(n,\epsilon)$ satisfies:

$$(1-\delta)2^{n(S(\rho)-\epsilon)} \le |T(n,\epsilon)| \le 2^{n(S(\rho)+\epsilon)}$$

 Let S(n) be a projector onto any subspace of H^{⊗n} of dimension at most 2^{nR}, where R < S(ρ) is fixed. Then for any δ > 0, and for sufficiently large n,

$$\operatorname{tr}\left(S(n)
ho^{\otimes n}
ight)\leq\delta.$$

Theorem

Suppose that ρ_A is the density operator corresponding to a quantum information source. Then the quantum entropy $H(A)_{\rho}$ is equal to the quantum data compression limit of ρ .

- Main idea for quantum data compression: measure typical subspace. Successful with probability 1ε .
- If successful, perform a unitary that rotates typical subspace to space of dimension ≤ 2^{n[H(ρ)+δ]} (n[H(ρ) + δ] qubits).
- Send qubits to Bob, who then undoes the compression unitary.
- Scheme is guaranteed to meet the fidelity criterion.

Holevo Bound

Accessible Information

- Alice prepares an ensemble $\mathcal{E} \equiv \{p_X(x), \rho_x\}.$
- Bob performs a POVM $\{\Lambda_y\}$.
- Bob wants to retrieve as much information as possible about the random variable *X*.
- Bob can choose which measurement he would like to perform.
- It would be good for Bob to perform the measurement that maximizes his information about *X*.

Accessible Information

- Alice prepares an ensemble $\mathcal{E} \equiv \{p_X(x), \rho_x\}.$
- Bob performs a POVM $\{\Lambda_y\}$.
- Bob wants to retrieve as much information as possible about the random variable *X*.
- Bob can choose which measurement he would like to perform.
- It would be good for Bob to perform the measurement that maximizes his information about *X*.

Definition

The accessible information $I_{acc}(\mathcal{E})$ of the ensemble \mathcal{E} is defined as:

$$I_{\rm acc}(\mathcal{E}) \equiv \max_{\{\Lambda_{y}\}} I(X; Y),$$

where the marginal density $p_X(x)$ is that from the ensemble and the conditional density $p_{Y|X}(y \mid x) = \text{Tr} \{\Lambda_y \rho_x\}.$

Definition

The Holevo information of an ensemble $\ensuremath{\mathcal{E}}$ is defined as:

$$\chi(\mathcal{E}) \equiv H(\rho) - \sum_{x} p_X(x) H(\rho^x) \,.$$

Theorem

 $I_{acc}\left(\mathcal{E}\right) \leq \chi(\mathcal{E}).$

Conclusion

- We can define information theoretic quantities in the quantum realm analogous to the classical definitions, but some radical departures from the classical notions may arise.
- We need to generalize the notion of quantum evolution to be able to capture the notion of noisiness of an evolution.
- In quantum setting, entropy still governs the ultimate limit of the compression rate.

Thank you!