

Introduction to Quantum Information Theory

BASED ON *Wilde, MM. (Cambridge University Press, Cambridge) (2013).*

Ali Almasi

Institut Polytechnique de Paris

[Entropy and Information](#page-1-0)

Von Neumann Entropy

Definition

The entropy $H(A)$ ^{ρ} of a state $\rho_A \in \mathcal{D}(\mathcal{H}_A)$ is defined as follows:

 $H(A)_{\rho} \equiv -\operatorname{Tr} \{ \rho_A \log \rho_A \}.$

Von Neumann Entropy

Definition

The entropy $H(A)$ ^{θ} of a state $\rho_A \in \mathcal{D}(\mathcal{H}_A)$ is defined as follows:

$$
H(A)_{\rho} \equiv -\operatorname{Tr} \left\{ \rho_A \log \rho_A \right\}.
$$

Some remarks:

• Suppose that the spectral decomposition of a state ρ_A is

$$
\rho_A = \sum_{x} p_X(x) |x\rangle \langle x|_A.
$$

Then $H(A)_{\rho} = H(X)$.

- \blacksquare *H*(ρ) ≥ 0.
- min_ρ_{*A*} $H(\rho) = 0$ and max_{*p*_A} $H(\rho) = \log d$.
- $H(\rho)$ is concave and it is invariant under isometries.

Joint Quantum Entropy

Definition

For a density operator $\rho_{AB} \in \mathcal{D}(\mathcal{H}_A \otimes \mathcal{H}_B)$ living in a bipartite system *AB*, we define:

H(*AB*)_{*ρ*} \equiv $-$ Tr $\{\rho_{AB}\log\rho_{AB}\}$

Joint Quantum Entropy

Definition

For a density operator $\rho_{AB} \in \mathcal{D}(\mathcal{H}_A \otimes \mathcal{H}_B)$ living in a bipartite system *AB*, we define:

$$
H(AB)_{\rho} \equiv -\operatorname{Tr} \left\{ \rho_{AB} \log \rho_{AB} \right\}
$$

Some remarks:

- For a pure state $|\phi\rangle_{AB}$, $H(A)_{\phi} = H(B)_{\phi}$, while $H(AB)_{\phi} = 0$.
- $H(\rho_A \otimes \sigma_B) = H(\rho_A) + H(\sigma_B).$
- For a state of the form ρ_{XB} $\equiv \sum_{x} p_X(x)|x\rangle \langle x|_X \otimes \rho_B^x$, the joint entropy *H*(*XB*)*^ρ* is as follows:

$$
H(XB)_{\rho}=H(X)+\sum_{x}p_{X}(x)H(\rho_{B}^{x}).
$$

Conditional Quantum Entropy and Mutual Information

Definition

For $\rho_{AB} \in \mathcal{D}(\mathcal{H}_A \otimes \mathcal{H}_B)$, the conditional quantum entropy is defined as:

 $H(A | B)_\rho \equiv H(AB)_\rho - H(B)_\rho$.

Conditional Quantum Entropy and Mutual Information

Definition

For $\rho_{AB} \in \mathcal{D}(\mathcal{H}_A \otimes \mathcal{H}_B)$, the conditional quantum entropy is defined as:

$$
H(A \mid B)_{\rho} \equiv H(AB)_{\rho} - H(B)_{\rho}.
$$

Some remarks:

- For a state of the form $\rho_{XB} \equiv \sum_{x} p_X(x) |x\rangle \langle x |_X \otimes \rho_B^x$, *H*(*B* | *X*)_{*ρ*} = $\sum_{x} p_X(x)H(p_B^x)$.
- The conditional entropy can be negative!

Conditional Quantum Entropy and Mutual Information

Definition

For $\rho_{AB} \in \mathcal{D}(\mathcal{H}_A \otimes \mathcal{H}_B)$, the conditional quantum entropy is defined as:

$$
H(A \mid B)_{\rho} \equiv H(AB)_{\rho} - H(B)_{\rho}.
$$

Some remarks:

- For a state of the form $\rho_{XB} \equiv \sum_{x} p_X(x) |x\rangle \langle x |_X \otimes \rho_B^x$, *H*(*B* | *X*)_{*ρ*} = $\sum_{x} p_X(x)H(p_B^x)$.
- The conditional entropy can be negative!

Definition

The quantum mutual information of a state $\rho_{AB} \in \mathcal{D}(\mathcal{H}_A \otimes \mathcal{H}_B)$ is defined as:

$$
I(A;B)_{\rho} \equiv H(A)_{\rho} + H(B)_{\rho} - H(AB)_{\rho}.
$$

Quantum Relative Entropy

Definition

The quantum relative entropy *D*(*ρ∥σ*) between a density operator $\rho \in \mathcal{D}(\mathcal{H})$ and a positive semi-definite operator $\sigma \in \mathcal{L}(\mathcal{H})$ is defined as follows:

$$
D(\rho||\sigma) \equiv \text{Tr}\{\rho[\log \rho - \log \sigma]\}
$$

if the following support condition is satisfied

 $supp(\rho) \subseteq supp(\sigma)$,

and it is defined to be equal to $+\infty$ otherwise.

Theorem

For any two density operators $\rho, \sigma \in \mathcal{D}(\mathcal{H})$,

 $D(\rho||\sigma) \geq 0$,

and $D(\rho||\sigma) = 0$ *if and only if* $\rho = \sigma$ *.*

[Quantum Evolution](#page-10-0)

What is the most general formulation of quantum evolution?

- \blacksquare A quantum evolution Φ should be a linear map acting on the space of (density) matrices.
- A quantum evolution should take quantum states to quantum states.

Definition

Let \mathcal{H}_A , \mathcal{H}_B be Hilbert spaces. Then a linear map $\Phi : \mathcal{L}(\mathcal{H}_A) \to \mathcal{L}(\mathcal{H}_B)$, is a quantum channel from system A to system *B* if it satisfies

- 1. $Tr[X] = Tr[\Phi(X)]$ for all $X \in \mathcal{L}(\mathcal{H}_A)$.
- 2. For any additional Hilbert space H_C and bipartite operator X_{AC} ∈ \mathcal{L} (\mathcal{H}_A ⊗ \mathcal{H}_C) with X_{AC} ≥ 0 we have

 $(\Phi \otimes \mathcal{I}_C)(X_{AC}) > 0.$

Kraus-Choi Representation of Quantum Channels

Theorem

Let Φ : $\mathcal{L}(A) \rightarrow \mathcal{L}(B)$ *be a linear map. Then the following are equivalent.*

- 1. Φ *is a quantum channel.*
- 2. *(Kraus representation)* There exist matrices $K_i \in \mathcal{L}(A, B)$ with $\sum_i K_i^{\dagger} K_i = I_A$ such that $\Phi(X) = \sum_i K_i X K_i^{\dagger}$.
- 3. *Define the Choi matrix C ∈ L*(*AB*) *of the map* Φ *by*

$$
C_{\Phi} := \left(\begin{array}{cccc} \Phi(|0\rangle\langle 0|) & \Phi(|0\rangle\langle 1|) & \dots & \Phi(|0\rangle\langle d-1|) \\ \Phi(|1\rangle\langle 0|) & \Phi(|1\rangle\langle 1|) & \dots & \vdots \\ \vdots & \vdots & \ddots & \vdots \\ \Phi(|d-1\rangle\langle 0|) & \dots & \dots & \Phi(|d-1\rangle\langle d-1|) \end{array}\right).
$$

Then $C_{AB} \geq 0$ *and* $Tr_B[C_{AB}] = I_A$ *.*

Examples of Quantum Channels

• **Quantum bit-flip channel**: For $p \in [0,1]$:

$$
\rho \to (1 - p)\rho + pX\rho X
$$

• **Quantum erasure channel:** For $p \in [0, 1]$:

$$
\rho \to (1-\rho)\rho + \rho |e\rangle\langle e|,
$$

where $\langle e|\rho|e\rangle = 0$ for all inputs ρ .

• **Unitary mixture channel**: For unitary *Uⁱ* 's and a probability distribution *{pi}*:

$$
\Phi(X) = \sum_{i=1}^n p_i U_i X U_i^{\dagger}
$$

• **Partial trace**.

Any discrete channel with the set of conditional distributions $p_{Y|X}(y | x)$ can be implemented by a quantum channel with the following Kraus operators

$$
\left\{\sqrt{\rho_{Y|X}(y|x)}|y\rangle\langle x|\right\}_{x,y}.
$$

Theorem

Let $\rho \in \mathcal{D}(\mathcal{H}), \sigma \in \mathcal{L}(\mathcal{H})$ *be positive semi-definite, and* $\mathcal{N}:\mathcal{L}(\mathcal{H})\rightarrow\mathcal{L}\left(\mathcal{H}^{\prime}\right)$ be a quantum channel.

 $D(\rho||\sigma) \geq D(\mathcal{N}(\rho)||\mathcal{N}(\sigma)).$

[Schumacher's Quantum Data](#page-17-0) [Compression](#page-17-0)

For an i.i.d source *X*, if we denote a sequence of *N* outputs of this source by *X [⊗]^N*, we have:

> For all $\delta \in (0,1)$, 1 $\frac{1}{N}H_{\delta}\left(X^{\otimes N}\right)\underset{N\rightarrow+\infty}{\longrightarrow}H(X).$

What if we have a quantum source?

Quantum Setting

A source: A Hilbert space *H* and a density matrix *ρ* over *H*.

$$
\rho = \sum_{x} p(x)|x\rangle\langle x|
$$

A compression scheme of rate *R*:

- \blacksquare The compression operation: a quantum operation \mathcal{C}^n , taking states in *H ⊗n* to states in a 2*nR*-dimensional state space, the compressed space.
- The decompression operation: takes states in the compressed space to states in the original state space.

Our criteria for reliability: In the limit of large *n* the entanglement fidelity $F(\rho^{\otimes n}, \mathcal{D}^n \circ \mathcal{C}^n)$ should tend towards one.

Fidelity $F(\rho, \sigma)$ between density matrices ρ and σ is defined as

$$
F(\rho,\sigma) \equiv \|\sqrt{\rho}\sqrt{\sigma}\|_1^2.
$$

An *ϵ*-typical sequence:

$$
\left|\frac{1}{n}\log\left(\frac{1}{p(x_1)p(x_2)\ldots p(x_n)}\right)-S(\rho)\right|\leq \epsilon.
$$

An ϵ -typical state: A state $|x_1\rangle |x_2\rangle \ldots |x_n\rangle$ for which the sequence x_1, x_2, \ldots, x_n is ϵ -typical.

The ϵ -typical subspace: The subspace $T(n, \epsilon)$, spanned by all ϵ -typical states, $|x_1\rangle \dots |x_n\rangle$.

The projector onto the ϵ -typical subspace: The projector $P(n, \epsilon)$ which is defined as:

$$
P(n,\epsilon) = \sum_{x \text{ is } \epsilon\text{-typical}} |x_1\rangle \langle x_1| \otimes |x_2\rangle \langle x_2| \otimes \ldots |x_n\rangle \langle x_n|
$$

Typical Subspace Theorem

Theorem

1. *Fix* $\epsilon > 0$. Then for any $\delta > 0$, for sufficiently large n,

$$
\operatorname{tr}\left(P(n,\epsilon)\rho^{\otimes n}\right)\geq 1-\delta.
$$

2. *For any fixed ϵ >* 0 *and δ >* 0*, for sufficiently large n, the dimension* $|T(n, \epsilon)| = \text{tr}(P(n, \epsilon))$ *of* $T(n, \epsilon)$ *satisfies:*

$$
(1-\delta)2^{n(S(\rho)-\epsilon)}\leq |T(n,\epsilon)|\leq 2^{n(S(\rho)+\epsilon)}.
$$

3. *Let S*(*n*) *be a projector onto any subspace of H[⊗]ⁿ of dimension at most* 2^{nR} *, where* $R < S(\rho)$ *is fixed. Then for any* $\delta > 0$ *, and for sufficiently large n,*

$$
\mathrm{tr}\left(S(n)\rho^{\otimes n}\right)\leq \delta.
$$

Theorem

Suppose that ρ^A is the density operator corresponding to a quantum information source. Then the quantum entropy H(*A*)*^ρ is equal to the quantum data compression limit of ρ.*

- Main idea for quantum data compression: measure typical subspace. Successful with probability 1 *− ε*.
- If successful, perform a unitary that rotates typical subspace to space of dimension $\leq 2^{n[H(\rho)+\delta]}$ $(n[H(\rho)+\delta]$ qubits).
- Send qubits to Bob, who then undoes the compression unitary.
- Scheme is guaranteed to meet the fidelity criterion.

[Holevo Bound](#page-23-0)

<u> The Common Section of </u>

Accessible Information

- Alice prepares an ensemble $\mathcal{E} \equiv \{p_X(x), \rho_X\}.$
- Bob performs a POVM *{*Λ*y}*.
- Bob wants to retrieve as much information as possible about the random variable *X*.
- Bob can choose which measurement he would like to perform.
- It would be good for Bob to perform the measurement that maximizes his information about *X*.

Accessible Information

- Alice prepares an ensemble $\mathcal{E} \equiv \{p_X(x), \rho_X\}.$
- Bob performs a POVM *{*Λ*y}*.
- Bob wants to retrieve as much information as possible about the random variable *X*.
- Bob can choose which measurement he would like to perform.
- It would be good for Bob to perform the measurement that maximizes his information about *X*.

Definition

The accessible information $I_{\text{acc}}(\mathcal{E})$ of the ensemble $\mathcal E$ is defined as:

$$
I_{\text{acc}}(\mathcal{E}) \equiv \max_{\{ \Lambda_y \}} I(X; Y),
$$

where the marginal density $p_X(x)$ is that from the ensemble and the conditional density $p_{Y|X}(y | x) = \text{Tr} \{ \Lambda_v \rho_x \}.$

Definition

The Holevo information of an ensemble *E* is defined as:

$$
\chi(\mathcal{E}) \equiv H(\rho) - \sum_{x} p_X(x) H(\rho^x).
$$

Theorem

*I*_{acc} $(\mathcal{E}) \leq \chi(\mathcal{E})$.

[Conclusion](#page-27-0)

and the company of the company

- We can define information theoretic quantities in the quantum realm analogous to the classical definitions, but some radical departures from the classical notions may arise.
- We need to generalize the notion of quantum evolution to be able to capture the notion of noisiness of an evolution.
- In quantum setting, entropy still governs the ultimate limit of the compression rate.

[Thank you!](#page-29-0)