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Introduction



Problem Set-up

Given an unknown state ρ? ∈ L(Cd), picked from a known set of states
E = {ρ1, . . . , ρn} with a known prior probability distribution on E ,

We want to find an optimal measurement to determine ρ?,

In the sense that the probability of success is optimized.

We can focus on finding a POVM measurement (Why?).
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An Application: Oracle Identification Problem

Given an oracle implementing an unknown n-bit Boolean function
f : {0, 1}n 7→ {0, 1} picked uniformly at random from a known set F of
functions,

Identify f with the minimum number of calls to the oracle.

|ψf〉 = 1
2n−1

2n−1∑
x=0

(−1)f(x)|x〉
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Some Notations

For ρi ∈ E , which appears with probability pi, define

ρi
′ := piρi.

If ρi = |ψi〉 〈ψi|, we define

|ψi
′〉 = √pi |ψi〉 .

For a measurement M = {Mi}i, we denote the probability of success in
distinguishing which state is given, by PM(E).

Popt(E) := sup
M

PM(E)

PM(E) =
∑

i
tr(Miρi

′)
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Pretty Good Measurements (PGM)

What are the discrimination strategies?

• non-measurement strategy:
The probability of sucess is

∑
i pi2.

• the most natural way to design a measurement:

Mi := ρi
′.

However, these operators do not satisfy the completeness condition:

ρ :=
∑

i
ρi

′ =⇒ tr(ρ) = 1 =⇒ ρ 6= I

Mi := ρ− 1
2 ρi

′ρ− 1
2
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Pretty Good Measurements (PGM) for Pure States

It is a projective (?) measurement which is defined as

PGM = {|vi〉 〈vi|}i,

where
|vi〉 := ρ− 1

2 |ψi
′〉 .

Our PGM is not necessarily projective!
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Why is it ”pretty good”?

Theorem (Barnum–Knill)

Ppgm(E) ≥ Popt(E)2.

Theorem (Barnum–Knill)√
Ppgm(E) ≥ Popt(E).

6



Why is it ”pretty good”?

Theorem (Barnum–Knill)

Ppgm(E) ≥ Popt(E)2.

Theorem (Barnum–Knill)√
Ppgm(E) ≥ Popt(E).

6



Gram matrix

For a while, let’s limit ourselves to the case where ρi’s are pure states.
We can encode the inner product of all the states in an n × n matrix G:

Gij = √pipj 〈ψi | ψj〉

S := (|ψ′
1〉 , . . . , |ψ′

n〉) =⇒ G = S†S

We may similarly encode the probability of getting outcome i and
receiving state j in a matrix P:

Pi,j := 〈vi|ψj
′〉

Then the success probability is

Ppgm(E) =
n∑

i=1
|〈vi | ψ′

i 〉|
2 =

n∑
i=1

|Pii|2.
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Gram matrix and PGM

We have:

(
P2)

ij =
n∑

k=1

〈
ψ′

i

∣∣∣ρ−1/2
∣∣∣ψ′

k

〉〈
ψ′

k

∣∣∣ρ−1/2
∣∣∣ψ′

j

〉
=
〈
ψ′

i

∣∣∣∣∣
(
ρ−1/2

n∑
k=1

|ψ′
k〉 〈ψ′

k| ρ−1/2

)∣∣∣∣∣ψ′
j

〉
= Gij

Thus,
P =

√
G.

Corollary

Ppgm(E) =
n∑

i=1
(
√

G)2
ii
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Two Lower Bounds for State
Discrimination



Two Lower Bounds

In this part, we give the two lower bounds for the success probability of
PGM:

• A bound obtained from the pairwise inner products
• A bound from the eigenvalues of the Gram matrix
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A Bound from Pairwise Inner Products (1)

Lemma
If for any x > 0, √x ≥ ax + bx2, then (

√
G)ii ≥ aGii + b

∑n
j=1 |Gij|2.

We find the parameters a and b such that aGii + b
∑n

j=1 |Gij|2 is
maximized.

The maximum is attained when a = 3
2
√

r and b = − 1
2r3/2 , where

r =
∑n

j=1 |Gij|2

Gii
.
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A Bound from Pairwise Inner Products (2)

Plugging it in our lemma:

Ppgm(E) ≥
n∑

i=1

p2
i∑n

j=1 pj |〈ψi | ψj〉|2
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A Bound from Eigenvalues

n∑
i=1

(
√

G)ii =
n∑

i=1

√
λi

⇒
( n∑

i=1
(
√

G)ii

)2

=
( n∑

i=1

√
λi

)2

⇒n
n∑

i=1
(
√

G)2
ii ≥

( n∑
i=1

√
λi

)2

Ppgm(E) ≥ 1
n

( n∑
i=1

√
λi

)2
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What about Mixed States?

Let E be an ensemble of n mixed states {ρi} with a priori probabilities
{pi}, and having spectral decompositions ρi =

∑d
k=1 λik |vik〉 〈vik|.

Define F to be the ensemble of the nd pure states {|vik〉} with a priori
probabilities {piλik}. Then Ppgm(E) ≥ Ppgm (F).
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Distinguishing Random Quantum
States



Discrimination for Random Ensembles (Expectation)

Theorem
Let E be an ensemble of n equiprobable d-dimensional quantum states
{|ψi〉} with n/d → r ∈ (0,∞) as n, d → ∞, and let the components of
|ψi〉 in some basis be i.i.d. complex random variables with mean 0 and
variance 1/d. Then

E (Ppgm (E)) ≥
{

1
r
(
1 − 1

r
(
1 − 64

9π2

))
if n ≥ d

1 − r
(
1 − 64

9π2

)2 otherwise

and in particular E (Ppgm (E)) > 0.720 when n ≤ d.

What is the point here?

• We have random ensembles.
• We need to bound the expectation of the probability of success.
• The premises of the theorem provide us the possibility of applying

some nice results from random matrix theory.
• States are being chosen according to the Haar measure.
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Discrimination for Random Ensembles
(Concentration of Measure)

Theorem
Let E be an ensemble of n d-dimensional quantum states picked
uniformly at random. Set p = E (Ppgm (E)) = 1

r
(
1 − 1

r
(
1 − 64

9π2

))
if

n ≥ d, and p = 1 − r
(
1 − 64

9π2

)
otherwise. Then

Pr [Ppgm(E) ≤ p − ϵ] ≤ 2 exp
(

−C(2nd + 1)ϵ2
2

)
where C = 1/

(
18π3).
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Conclusion



Conclusion

• The importance of this work is:
• finding analytic lower bounds for the success probability of pretty

good measurements
• using the theory of random matrices to apply the bounds in the case

of random ensembles
• If my talk went well, you should probably know that:

• what is the state discrimination problem.
• the state discrimination problem has many applications.
• pretty good measurement are indeed pretty good strategies.
• obtaining lower (upper) bounds for the success probability of pretty

good measurements might be useful to solve other problems.
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Thank you!
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