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Introduction



Quantum States in a Nutshell

(Quantum) Mechanics is only a mathematical framework for
formulating physical phenomena in the language of dynamical
systems.

To specify a dynamical system we need to specify

its state space,
and its transition rule.



Quantum States in a Nutshell

(Quantum) Mechanics is only a mathematical framework for
formulating physical phenomena in the language of dynamical
systems.

To specify a dynamical system we need to specify

its state space,
and its transition rule.

In quantum mechanics, any physical system is associated with
a Hilbert space 3, over the field of complex numbers.

Definition

For a physical system associated with a Hilbert space I, a state

of the system is a matrix p : H — X, such that:

tr(p) =1
p is positive semidefinite (PSD), denoted as p > 0.

These matrices are called density matrices.



Quantum State Discrimination

State Discrimination
Alice possesses an ensemble & = {(p1, p1), ..., (PN, pn)}. She picks
pn) and sends it to

a state p» according to the distribution (py, .. .,
Bob. Bob’s task is to guess i € [N] such that p; = p».

Bob is allowed to perform quantum measurements.
A quantum measurement (POVM) is a set of operators
My}, where M; : H — H and M; > 0, such that

N
> Mi=1s.
i=1

A quantum measurement can be seen as a guessing scheme

P(Bob guesses p; | p; is sent) = tr(M;p;)
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pn) and sends it to

a state p» according to the distribution (py, .. .,
Bob. Bob’s task is to guess i € [N] such that p; = p».

Bob is allowed to perform quantum measurements.
A quantum measurement (POVM) is a set of operators
My}, where M; : H — H and M; > 0, such that

N
ZM,- = 14.
=1

A quantum measurement can be seen as a guessing scheme:
P(Bob guesses p; | p; is sent) = tr(M;p;)
(Perfect Discrimination) Bob wants to design a quantum
measurement such that for all j, tr(M;p;) = 1, and for allj # i,

tr(M/pj) =0.
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Quantum State Discrimination

State Discrimination

Alice possesses an ensemble € = {(p;, pj)}jc(v)- She picks a state p>
according to the distribution (p;);c v and sends it to Bob. Bob’s task
isto guessi € [N] such that p; = p».

If the states are not mutually orthogonal, then one can not
perfectly discriminate.
In the case of imperfect distinguishability, different merits
might be considered:

minimum-error, unambiguous, maximum-confidence, etc.

The problem has applications in quantum information theory,
quantum cryptography and quantum query complexity.



Iterative Methods in Optimization

Make a guess, and iterate on it until you converge!

Itis a quite old method:
Heron (60 AD) described an iterative method for finding the
square root.
Iranian mathematician Jamshid Kashi (1380-1429) used an
iterative method to compute sin 1° to a high precision.
Newton used an iterative method for finding the root of a
polynomial.

Iterative methods are widely used today:
Gradient descent, hill climbing, Newton’s method,
quasi-Newton methods, etc.

They can be more efficient than the direct methods.



A Quick Recap on SDPs (Based on [sC23])



Semidefinite Programs

Semidefinite Programs are generalizations of linear programs:
constraint optimization problems
in Hermitian variables,
with a linear objective function tr(AX), for some Hermitian
operator A,
and a number of linear equality and inequality constraints
®;(X) = Biand T;(X) < C;, where @;, T; are linear hermiticity
preserving maps, and B;, C; are Hermitian.



Semidefinite Programs

Semidefinite Programs are generalizations of linear programs:
constraint optimization problems

in Hermitian variables,

with a linear objective function tr(AX), for some Hermitian
operator A,

and a number of linear equality and inequality constraints
®;(X) = Biand T;(X) < C;, where @;, T; are linear hermiticity
preserving maps, and B;, C; are Hermitian.

SDP

maximize : tr(AX)

subjectto: @;(X) = B; i€ ml,
X <¢qG jell

SDP power: many problems can be cast as SDPs!
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optimization problem providing an alternative formulation of
the primal.

Every feasible point of the Dual, provides an upper-bound on
the optimal value of the primal.



We already introduced the Primal problem. The Dual is also an
optimization problem providing an alternative formulation of
the primal.

Every feasible point of the Dual, provides an upper-bound on
the optimal value of the primal.

Primal SDP DualSDP
maximize : tr(AX)
minimize : tr(V:B tr(Z;C;)
subject to: @;(X) = B; ielml, inimiz Z r(¥iBi) Z r(ZG)

i=1

subjectto:A—ZCD;* (V) —er (z)=0

i=1

<G je.

Z;20 jeln.

The optimal value of the dual is always an upper-bound of the
optimal value of the primal (Weak Duality).



Primal SDP Dual SDP
maximize : tr(AX) m n
inimize : YiBi ZiG
subjectto: ;(X) =B i< [ml, minimize ;tr( iBi) + j:thr( iG)
<G jel.

m n
subjectto: A — Z o7 (V) — Z ¥ (Z) =0,
j=1

i=1
Z>0 jeln.

Under some mild conditions the optimal value of the primal
and the dual are equal (Strong Duality).
If the primal (dual) has finite optimal value and it is strictly
feasible, then the strong duality holds.

Strong duality holds for almost all the SDPs arising in QIT.



Primal SDP Dual SDP
maximize : tr(AX) m n
inimize : YiBi ZiG
subjectto: ;(X) =B i< [ml, minimize ;tr( iBi) + j:thr( iG)
<G jel.

m n
subjectto: A — Z o7 (V) — Z ¥ (Z) =0,
j=1

i=1
Z>0 jeln.

Under some mild conditions the optimal value of the primal
and the dual are equal (Strong Duality).
If the primal (dual) has finite optimal value and it is strictly
feasible, then the strong duality holds.

Strong duality holds for almost all the SDPs arising in QIT.

When the strong duality holds, we have Complementary
Slackness:

z: [G—Tj(x)]=0 forj=1,....n



State Discrimination Revisited
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State Antidiscrimination

Alice possesses an ensemble & = {(pj, pj)}jc(v- She picks a state p>
according to the distribution (p;);c (v and sends it to Bob. Bob’s task
is to guess i € [N] such that p; # p».

P1
HPSL ﬂp%
Antidiscrimination is weaker than
the discrimination.
It turned out to be useful in proving
1P—ontology theorems [Leil4]. 02 P3
IT
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Quantum Guessing Game

Alice possesses an ensemble & = {(p;, pj)}jc(nj, and picks a state
p7 according to the distribution (p;);c(y and sends it to Bob. If Bob
guesses that p- is p; and the true index of p» is j, then Bob receives
thereward f(i,j) € R. Bob’s task is to maximize his expected reward.



A More General Setting: Quantum Guessing Games

Quantum Guessing Game

Alice possesses an ensemble & = {(p;, pj)}jc(nj, and picks a state
p7 according to the distribution (p;);c(y and sends it to Bob. If Bob
guesses that p- is p; and the true index of p» is j, then Bob receives
thereward f(i,j) € R. Bob’s task is to maximize his expected reward.

The problem can be cast as a state discrimination [CHT22].

Many problems can be seen as the special cases of the
quantum guessing games [CHT22; MSU23]:
State Discrimination (f(i,j) = 8;;), State Antidiscrimination
(f(i,j) = 1 —;;), Set Discrimination, etc.



Formulation of the Problem As a SDP

A quantum guessing game can be formulated as the following SDP:

Primal SDP
LN
maximize: Ry = Z Z f(i,j) tr(M;p;)
i—1 j—1

N
subjectto: ZMk = il

k=1

M, >0 kelLl,

~ def
where py = pypx-



Formulation of the Problem As a SDP

In particular, the SDP formulation of the state discrimination is:

Primal SDP Dual SDP
N

maximize: Py = Z tr(Mip;)
i—1

minimize : tr(V)
subjectto: Y >p; i€ [N]
N
subjectto: ZIVIk =,
k=1
My >0 kelN.

Primal and Dual are both strictly feasible (Strong Duality).
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Strategies for Solving the State Discrimination Problem

There are typically two general strategies:

Finding the optimal value:
Analytically: An analytical solution is only known for few cases:
2-state ensemble: Pope = 2 + 11 — P21
equiprobable qubits [DT10], geometrically uniform states
[EMV04], mirror-symmetric states [And+02].
Numerically: Using the SDP solvers.
Using sub-optimal measurements with an acceptable degree
of quality:
Pretty good (bad, ugly) measurements:

N
M; = Y2542 where Zgzm.
Belavkin Measurements: Having an array of weight matrices
{wy € Pos(Crnkex) : k € [N]}and writing p; = 1]),-L|),T, define

def

M <= 5, tpwab T, where WEZQnWAb, :



Optimality Conditions

Using the complementary slackness, we can obtain the following
necessary and sufficient condition for an optimal measurement.

Theorem ([Hol73; YKL75])

A measurement M = {MJcy) is optimal iff there exists an operator
G € Pos(CY) such that GM, = pyM, and G > py for all k € [N].



Optimality Conditions

Using the complementary slackness, we can obtain the following
necessary and sufficient condition for an optimal measurement.

Theorem ([Hol73; YKL75])
A measurement M = {MJcy) is optimal iff there exists an operator
G € Pos(CY) such that GM, = pyM, and G > py for all k € [N].

There is also an optimality condition for the Belavkin measurement.

Theorem ([BM87])
A measurement M = {MyJ,cn is optimal iff it is identical to a
Belavkin measurement with weights {wy J;c[y; such that there exist

a positive ¢ satisfying p,Y,w, = cw, and p,Y, < c1, where Yy il

w,ﬁzﬁwk, forall k € [N].




Towards an Iterative Algorithm



An Algorithm by JeZek et al. [ ]

Theorem
A measurement M = {MJ,cn) is optimal iff there exists an operator
G € Pos(CY) such that GMy, = pxM, and G > pj forall k € [N].
My = G pyMypyG
N ~ ., ~:1/2
If we take Gto be (3} ;" ; piMip;) *~, we have

. —1/2 N —1/2
My = (Z 5:'/\4:'5/') PkMk Pk (Z 5:'/\4/‘5:') :
i—1

i=1
JFR iteration

N —1/2 N —1/2
def I IO IS
M,EH — (Z piMipi> PkMicPi <Z piMipi>
i=1

i=1



An Algorithm by JeZek et al. [ ]

JFR iteration
- ~1/2 . ~1/2
T (Z 5:‘/‘/7/'5/‘) PkMkpk (Z 51'%5:‘)
i=1 i=1
They observe that:

"In the many tests we did a monotonic convergence to the
true global maximum of the success rate always had been
observed, though we have no analytic proof of this behavior
in general."



A Modification by Nakashira et al. | ]

They proposed iterating on weights instead of measurements.

Advantages: lower computational costs, accelerating the

convergence speed
Theorem
A measurement M = {MyJ,cn is optimal iff it is identical to a
Belavkin measurement with weights {wy} v such that there ex-
ist a positive c satisfying p,Yiw, = cwy and piY, < cl, where
1
Vi L glx, 2y, forallk e [N,
NKU Iteration
W,({Jr) = PiYkaYk




A More General Framework: Directional Iterations [

For an ensemble € = {pyJxc v define the semidefinite inner
product (-, )¢ on the space of [L(Cd)]N as

(E,F)e &L Ztr (EFFip),

forE = {Ek}ke and F = {Fk}ke

For a measurement M = {Mk}ke[N}, where M, = EIEk,

Pu=Elle.



A More General Framework: Directional Iterations [

Eng—ethrEF,p,

Maximal Seminorm Problem

LetV bealinear (realor complex) space equipped with a semidefinite
inner product (-, -) : V x V — V, and consider the seminorm induced
by this semidefinite inner producton V. Let S C V. Find an element
of S which is maximal with respect to this seminorm.

def
vg—{f € £(C)" | [Elle < oo},

def
{EeV(gIZE Er =14}

Popt = max|ls|[¢



A More General Framework: Directional Iterations [

Directional Iteration
A directional iterate of v € V, is an element v(*) € S such that

(+)

v = argmaxRe(s, v).

seS
We immediately conclude that

Theorem

2 2
o ) =

Tyson showed that the JFR iteration is a dirctional iteration.



The Convergence of NKU in the Case of Linearly

Independent Pure States [ ]

Note that from the previous theorem, it is implied that

(r+1) 1T [-(r+1) (N7 ~
w57 — £ [ - 0] i

M-

slr) —
k=1

converges to zero when r — oo.
When we have pure states, weights are positive numbers, as
wellas Yys (Y = w,ﬁzﬁwk). Thus, many things commute!
One can use the linear independence to show that ka,Er) tends
to 1 whenr — oo.
Because of this convergence, we have

{PM(r) P (1 - 6)2 fPopt .



Summary and Conclusion



Summary and Conclusion

State discrimination is an important problem in QIT from both
theoretical and practical perspectives.

Using the SDP formulation of the problem can help provide
new iterative methods for solving it.

The convergence analysis of these algorithms does not seem
to be easy.



Thank you all for your attention!
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