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Our research project focuses on linear positive maps and their application in quantum
information theory. These maps –whose study is relevant to a range of other topics, from
algebraic geometry to semidefinite programming– can be used as criteria for detecting
quantum entanglement, and are interestingly related to another family of tools that are
used for entanglement detection, namely entanglement witnesses.
The problem of recognizing quantum states that are not entangled has been proven to be
an NP-hard problem. Nevertheless, the need for doing optimizations over this set arises
often in quantum information theory. The aim of this project is to study positive but
not completely positive maps in order to find better relaxations for these optimization
problems. In this report, we present a literature survey on this topic, as well as the the
proofs of the original results obtained during the project, and the relevant numerical
results obtained from numerical simulations ran by the author.

I. INTRODUCTION

A. Quantum Mechanics: A Brief Recap

1. A Dynamical System Formulation

Almost everyone is familiar with the myth of a falling
apple, which inspired young Isaac Newton when it hit
him on the head and spurred him to develop his theory,
which attempts to explain the Philosophiae Naturalis
mathematically. Regardless of whether this narrative is
historically accurate, we begin this section by utilizing
the falling fruit example to recap what (quantum)
mechanics is all about.

Consider the previously physical system, namely a fruit
that has fallen from a tree and is traveling towards the
ground. Some of the physical qualities of this fruit change
as it moves, whereas the others do not. For example, its
height, velocity, kinetic, and potential energy all change
as it moves, yet its mass remains constant. The first
family of attributes is known as dynamic properties,
whereas the second family is known as static properties.

Generally speaking, the goal of classical (quantum)
mechanics is to study the dynamical properties of those
macroscopic (microscopic) physical systems made up of
moving parts. To achieve this, it seems natural to mathe-
matically model these dynamical variables as continuous-
time dynamical systems. Consequently, many physical
problems could be formulated as mathematical problems
in the theory of dynamical systems. Assume, in the
falling fruit example, you’re wondering about the relation
between the fruit’s original height and its velocity when
it strikes the ground. This might be readily phrased in
dynamical system language as ”given the initial state of
a dynamical system, could one anticipate the state of the
system at a specific moment?".

To formulate a dynamical system, it is essential to
specify two components: the system’s state space, and
how the system’s state evolves over time. In quantum
mechanics, a general approach involves defining the

state space using density matrices and characterizing the
evolution of the system using quantum channels.

In accordance with one of the postulates of quantum
mechanics, associated to every physical system is a
complex Hilbert space. A density matrix over a Hilbert
space H is an operator ρ : H → H, with the conditions
that tr(ρ) = 1 and ρ is positive semidefinite (PSD),
represented as ρ ≥ 0. For a physical system with the
associated Hilbert space H, the state space of the system
is the set of all density matrices over H. If we have
a composite system, with two subsystems A and B,
whose associated Hilbert spaces are HA and HB , the
Hilbert space associated to the whole composite system
is HA ⊗ HB , and the state space of the system consists
of all density matrices over HA ⊗ HB . Here, ⊗ denotes
the tensor product of two linear spaces.

Another postulate of quantum mechanics asserts that
the evolution of the system’s state can be described by a
special type of maps, namely quantum channels. Suppose
that HA and HB are two Hilbert spaces. A map Φ :
L(HA) → L(HB), is said to be a quantum channel if (1)
it preserves the trace, i.e. for all ρ ∈ L(HA), tr(ρ) =
tr(Φ(ρ)), and if (2) it is completely positive, i.e. for any
Hilbert space HC and for all ρAC ∈ L(HA ⊗ HC) with
ρAC ≥ 0, (Φ ⊗ IC)(ρAC) ≥ 0. Although the definition
of a quantum channel may initially seem strange, the
following theorem provides an efficient way for checking
whether a map is a quantum channel.

Theorem 1 (Kraus-Choi representation (Choi, 1975a;
Kraus et al., 1983)). Let Φ : L(HA) → L(HB) be a linear
map. The following are equivalent:

1. Φ is a quantum channel.

2. There exist linear operators Ki : HA → HB with∑
iK

†
iKi = IA such that

Φ(X) =
∑
i

KiXK
†
i . (1)

The Kis are called Kraus operators.
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3. Define the Choi matrix CΦ : HA⊗HB → HA⊗HB

of the map Φ as:

CΦ = (IA ⊗ Φ) |Ω⟩ ⟨Ω| ,

where |Ω⟩ =
∑
i |ii⟩. Then trB(CΦ) = IA and

CΦ ≥ 0. (2)

In the above theorem, one can see that the complete
positivity condition and relations (1) and (2) are
equivalent.

A linear map Φ : L(HA) → L(HB) is said to be
positive, if for any ρ ∈ L(HA) with ρ ≥ 0, Φ(ρ) ≥ 0. It is
clear that every completely positive map is also positive,
but the converse does not necessarily hold.

2. Entanglement: The Distinctive Essence of Quantum
Mechanics

Following the formalism provided above, one imme-
diately notices that interesting phenomena may arise.
Suppose that we have a composite bipartite system,
consisting of two subsystems A and B, with the
associated Hilbert spaces HA and HB , respectively. A
state ρAB ∈ L(HA ⊗ HB) of this composite system is
called separable if it can be written as

ρAB =
∑
i

piσi ⊗ τi,

where σi ∈ L(HA) and τi ∈ L(HB) are density matrices
for all i’s, and pi’s are positive real numbers with the
condition that

∑
i pi = 1. A state that is not separable,

is called entangled.
Entanglement plays an important role in quantum

physics, and as Schrödinger addresses in his key pa-
per (Schrödinger and Born, 1935), it is "the characteristic
trait of quantum mechanics, the one that enforces its
entire departure from classical lines of thought". Several
significant consequences of the existence of entangled
quantum states have been discovered, and the study
is currently ongoing. In particular, it is known that
quantum entanglement is a crucial resource for quantum
algorithms to have an exponential speed-up over classical
computing (Jozsa and Linden, 2003). There are also
several other computer science related applications of
quantum entanglement, e.g. quantum teleportation,
quantum superdense coding and entanglement-based
quantum key distribution protocols.

For a bipartite system consisting of two subsystems
A and B, with the associated Hilbert spaces HA and
HB , we denote the set of all density matrices over
HA ⊗ HB by D(n,m), and the set of all separable states
by SEP(n,m), where n and m are the dimensions of HA

and HB , respectively. Unless it causes confusion, we

typically replace D(n,m) and SEP(n,m) with D and SEP,
respectively, and omit specifying the local dimensions.

With the introduction of the set of entangled and
separable states, one might ask if it is possible to
efficiently determine if a given state is separable or not.
The following theorem states that recognising SEP is not
an easy problem.

Theorem 2. It is NP-hard to determine whether an
arbitrary quantum state within an inverse polynomial
distance from SEP is entangled (Gharibian, 2010).

B. Motivation of the Work

Theorem 2 shows that determining whether a
given state is separable, is an asymptotically difficult
problem. Nonetheless, there exist scenarios in quantum
information theory that we are interested in solving an
optimisation problem over the set of separable states.

As an example, suppose that we are interested in
finding a way to measure the amount of entanglement
for a bipartite system. This is a fundamental problem
in quantum theory, which has led to the emergence
of various measures of entanglement. One of these
measures, which was proposed in (Vedral and Plenio,
1998), is known as the relative entropy of entanglement,
and is defined as

ER (ρAB) := min
σAB∈SEP

S (ρAB∥σAB) ,

where S (ρAB∥σAB), which is called the relative entropy
of the states ρAB and σAB is defined as S (ρAB∥σAB) :=
tr(ρAB log ρAB) − tr(ρAB log σAB). Other examples of
such optimization problems can be found in (Tavakoli
et al., 2023).

In these scenarios, it is common to relax the original
optimization by finding efficiently computable partial
conditions on the solutions, that lead us to bounds on
the best solution. This is where entanglement criteria
come into play.

1. Entanglement Criteria Based on Positive Maps

Suppose that we have a bipartite system consisting of
two subsystems A and B, with the associated Hilbert
spaces HA and HB . Let Φ : L(HB) → L(HA) be a
positive but not completely positive map. We define the
set of all states that are positive under partial application
of Φ by

PPΦ := {ρAB ∈ D : (IA ⊗ Φ)ρAB ≥ 0}.

One can see that the above set is a proper subset of D
(as we will prove in Proposition 14). Moreover, for any
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separable state ρ =
∑
i piσi ⊗ τi,

(IA ⊗ Φ)ρ =
∑
i

piσi ⊗ Φ(τi) ≥ 0,

which implies that SEP is contained in PPΦ. Thus, these
sets serve as criteria for entanglement: for any positive
but not completely positive map Φ, all the states that
are not in PPΦ are necessarily entangled. In other words,
each PPΦ provides a necessary condition for separability.
We say that a state ρ satisfies the PPΦ criterion if ρ ∈
PPΦ. Notably, checking whether a state is in PPΦ can
be efficiently done, unlike checking the separability of a
state.

A well-known example of a map that is positive but
not completely positive is the transposition map, and
the associated PPΦ set of states is known as PPT. In
many optimization scenarios, it’s common to relax the
original optimization over SEP to an optimization over
PPT. In low dimensions, it turns out that PPT = SEP,
while they are provably not equal in other dimensions
(Fawzi, 2021; Woronowicz, 1976). Our main motivation
for the study of positive but not completely positive maps
is to explore whether the widespread use of PPT as an
approximation of SEP is merely a convention or if the
transposition map possesses properties that make it, in a
sense, fundamental, and PPT is the best choice for these
relaxation.

2. Entanglement Criteria based on Entanglement Witnesses

Another family of entanglement criteria that plays an
important role in the study of quantum entanglement,
especially from a physical viewpoint, are entanglement
witnesses.

Definition A Hermitian operator W ∈ L(HA ⊗ HB) is
called an entanglement witness if

1. W is not a positive operator,

2. for all product states |ψA⟩ ⟨ψA| ⊗ |ψB⟩ ⟨ψB |,

tr(W |ψA⟩ ⟨ψA| ⊗ |ψB⟩ ⟨ψB |) ≥ 0.

Using the spectral decomposition theorem, one can see
that entanglement witnesses can be used for detecting
entanglement, meaning that for any witnessW ∈ L(HA⊗
HB) and any state ρAB ∈ L(HA ⊗ HB), if tr(Wρ) < 0,
then ρ is entangled.

The physical importance of entanglement witnesses lies
in their Hermitian nature, rendering them as observables
that can be measured in a laboratory. Thus, by
experimentally measuring W , we can determine whether
a state ρ has the property that tr(Wρ) < 0, and
hence potentially conclude that the state is entangled.
(Horodecki et al., 2009).

Another motivation for this project is the study
of relationships between positive but not completely
positive map and entanglement witnesses, and using
them to improve our relaxations for the aforementioned
optimization problems.

C. Author’s Contributions and the Structure of the Report

My contributions in this project can be classified in
three categories:

• A significant part of this project was dedicated
to reviewing and understanding the existing
literature, by personally proving the results. In
particular, for almost every result that is mentioned
in this report, except for those stated without
proof, I have written my own proof.

• I ran numerical simulations (in python) to
implement most of the fundamental concepts that
will be discussed throughout this report, to help
us better understand the entanglement criteria and
their properties. The results of these simulations
had a significant influence on determining the
trajectory of our ideas during this project. Some
of the results of these simulations are presented in
this report, and the Jupyter notebook containing
all the simulations is available in this link.

• To the best of my knowledge, some parts of the
present work, mostly the results in Section V and
VI.B, are original.

This report is structured in five main sections. We begin
with an exploration of entanglement witnesses in Section
II, and then, moving into the other criteria, we provide
a list of examples of positive but not completely positive
maps in Section III. Section IV is dedicated to a short
introduction to the notion of duality for linear maps
and some of the useful applications of dual maps in our
context. In Section V, we establish a method for finding
entanglement witnesses using semidefinite programming,
and following that, we bring together all the notions
introduced in the first five sections to study the properties
of entanglement criteria in Section VI.

II. ENTANGLEMENT WITNESSES

We start this section by a simple geometric argument.

Proposition 3. For every entangled state ρAB ∈
L(HA ⊗ HB), there exists a Hermitian operator W ∈
L(HA ⊗ HB) such that tr(Wρ) < 0 and tr(Wσ) ≥ 0 for
all separable states σ.

Proof. The proof is a consequence of the hyperplane
separation theorem, which states that if C ⊂ V is a closed

https://github.com/ali-almasi/positive-but-not-completely-positive-maps


4

FIG. 1 An entanglement witness defines a separating
hyperplane.

convex proper subset of V and x ∈ V \ C, then x and C
can be strictly separated by a hyperplane. (Horodecki
et al., 1996). □

Let W be a Hermitian operator its existence is proved
by Proposition 3. Since tr(Wρ) < 0, we can conclude
that W is not a positive operator. Moreover, since
tr(Wσ) ≥ 0 for all separable states σ, and especially
for all product states |ψA⟩ ⟨ψA| ⊗ |ψB⟩ ⟨ψB |, we conclude
that W is an entanglement witness. On the other hand,
if W is an entanglement witness with an eigenvector
|v⟩ corresponding to a negative eigenvalue, the state
|v⟩ ⟨v| is an entangled state for which the inequality
tr(W |v⟩ ⟨v|) < 0 holds. Thus, the set of entanglement
witnesses is exactly the set of Hermitian operators
obtained from Proposition 3. Moreover, note that we can
think of an entanglement witness W as a normal vector,
defining a hyperplane consisting of all density matrices τ
that are perpendicular to W , i.e. tr(Wτ) = 0 (See Figure
1.).

Example The SWAP operator, which is defined as:

SWAP :=
∑
i,j

|i⟩ ⟨j| ⊗ |j⟩ ⟨i| ,

is an entanglement witness.

We can see that there is a correspondence between
entanglement witnesses and positive maps. This
correspondence can be obtained by using the Choi
matrix.

Proposition 4. (Choi–Jamiołkowski isomorphism) The
map J : L(LA,LB) → L(HA ⊗ HB), which is defined as

J (Φ) := CΦ =
dA∑
i,j=1

|i⟩ ⟨j| ⊗ Φ(|i⟩ ⟨j|) (3)

defines a bijection between the set of all positive but not
completely positive maps in L(LA,LB) and the set of all
entanglement witnesses in L(HA ⊗ HB).

Proof. The map J defines an isomorphism between
L(LA,LB) and L(HA ⊗ HB). Therefore, it suffices to
show that J (Φ) is an entanglement witness iff Φ is
positive but not completely positive.
Φ is positive iff for all |x⟩ ∈ HA, Φ(|x⟩ ⟨x|) ≥ 0, which
means that for all |y⟩ ∈ HB , ⟨y| Φ(|x⟩ ⟨x|) |y⟩ ≥ 0. Note
that

Φ(|x⟩ ⟨x|) =
∑
i,j

⟨i|x⟩ ⟨x|j⟩ Φ(|i⟩ ⟨j|).

Using the above equality, we obtain

⟨y| Φ(|x⟩ ⟨x|) |y⟩ =
∑
i,j

⟨x̄|i⟩ ⟨j|x̄⟩ ⟨y| Φ(|i⟩ ⟨j|) |y⟩

=
∑
i,j

⟨x̄y| (|i⟩ ⟨j| ⊗ Φ(|i⟩ ⟨j|)) |x̄y⟩

Therefore, Φ is positive iff for every |x⟩ ∈ HA and |y⟩ ∈
HB ,

tr(J (Φ) |x̄⟩ ⟨x̄| ⊗ |y⟩ ⟨y|) ≥ 0

or equivalently, for all ρAB ∈ SEP, tr(J (Φ)ρAB) ≥ 0.
Now, assume that there exists a state ρAB such that
tr(J (Φ)ρAB) < 0. Then there exists a vector |ψ⟩ ∈
HA ⊗ HB s.t. ⟨ψ|J (Φ)|ψ⟩ < 0, which means that J (Φ)
is not PSD. Note that J (Φ) is the Choi matrix of the
map Φ. Hence Φ is not completely positive. Finally, to
prove the other direction, one can see that ρAB = |x⟩ ⟨x|,
where |x⟩ is one of the negative eigenvectors of Φ’s Choi
matrix, yields tr(J (Φ)ρAB) < 0. □

As we mentioned earlier, positive but not completely
positive maps and entanglement witnesses can be related
in different ways. Note that the above proposition
provides one of such connections: every entanglement
witness specifies a positive map and from any positive but
not completely positive map, an entanglement witness
can be constructed.

III. POSITIVE MAPS

In this section we survey a number of well known
positive but not completely positive maps. It is
important to note that these maps do not necessarily
correspond to physically implementable maps, but as
we discussed earlier, they provide us useful tools in the
study of quantum entanglement. Before delving into the
examples, it is useful to mention a result by Yu (Yu,
2000), and discuss a corollary derived from it, as it will
be used later.

Theorem 5. Every positive map can be written as the
difference of two completely positive maps.
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Corollary 6. Positive maps are Hermitian preserving,
in the sense that if Φ : L(HA) → L(HB) is a positive
map, then for all X ∈ L(HA),

Φ(X†) = Φ(X)†
.

Proof. By Theorem 5, we have Φ = Φ1 − Φ2, where
Φ1 and Φ2 are completely positive. Suppose that the
Kraus decompositions of Φ1 and Φ2 are

∑
iKiXKi

† and∑
j JjXJj

†, respectively. Therefore,

Φ(X†) =
∑
i

KiX
†Ki

† −
∑
j

JjX
†Jj

† (4)

= [
∑
i

KiXKi
† −

∑
j

JjXJj
†]

†
= Φ(X)† (5)

□

In the following, we will list some examples of the
positive but not completely positive maps.

Transpose Map (Peres, 1996) The most famous ex-
ample of a positive map that is not completely positive
is the transposition map θ : L(H) → L(H), which is
defined as θ(X) := XT for all X ∈ H(A). For a PSD
matrix ρ, suppose that the spectral decomposition of ρ
is
∑
i λi |vi⟩ ⟨vi|. Then ρT =

∑
i λi|vi⟩⟨vi| which is PSD,

and this implies the positivity of θ.
To see that θ is not completely positive, we show that

the Choi matrix corresponding to θ is not PSD. The Choi
matrix Cθ of the transposition map is computed by:

Cθ =
∑
i,j

|i⟩ ⟨j| ⊗ θ(|i⟩ ⟨j|)

=
∑
i,j

|i⟩ ⟨j| ⊗ |j⟩ ⟨i|

A vector |v⟩ =
∑
i,j λi,j |ij⟩ is an eigenvector for Cθ iff

Cθ |v⟩ = α |v⟩ for an α ∈ C. One can see that Cθ |v⟩ =∑
i,j λj,i |ij⟩, and for all i < j, the vectors |vi,j⟩ :=

|ij⟩−|ji⟩ are the eigenvectors of Cθ, corresponding to the
eigenvalue α = −1. Since Cθ has a negative eigenvalue,
it is not PSD, and θ is not completely positive.

Remark By the definition of (partial) transpose, it is
clear that it is not canonical and depends on the choice of
basis. However, the eigenvalues of the partial transpose
of an operator do not depend on the choice of basis.

Remark If we work with a block matrix (Aij), where
Aij ∈ L(HB), the partial transpose of the matrix with
respect to the first and second components are (Aji) and
(AijT ), respectively. An example for a two qubit system

is illustrated below.

ρAB =


a11 a12 a13 a14

a21 a22 a23 a24

a31 a32 a33 a34

a41 a42 a43 a44

 ,

(I ⊗ θ)ρAB =


a11 a21 a13 a23

a12 a22 a14 a24

a31 a41 a33 a43

a32 a42 a34 a44

 ,

(θ ⊗ I)ρAB =


a11 a21 a31 a32

a12 a22 a41 a42

a13 a14 a33 a43

a23 a24 a34 a44


Remark It is worth noting that the transposition has a
physical meaning in terms of the notion of time reversal
(Sanpera et al., 1997).

Reduction Map (Horodecki and Horodecki, 1999)
The reduction map Λ : L(H) → L(H) is defined as:

Λ(ρ) := tr(ρ)IH − ρ.

The positivity of the map follows from the fact
that for a positive matrix H, tr(H) ≥ λmax =
maxunit vector |ψ⟩ ⟨ψ|H |ψ⟩. Another way to prove
the positivity of Λ is by considering the spectral
decomposition of ρ:

tr(ρ)I − ρ = (
∑
i

λi)I −
∑
i

λi |vi⟩ ⟨vi|

=
∑
i

(
∑
j

λj − λi) |vi⟩ ⟨vi| ≥ 0

The reduction map is not completely positive. To prove
this, let us consider the Choi matrix CΛ associated to it:

CΛ =
∑
i,j

|i⟩ ⟨j| ⊗ Λ(|i⟩ ⟨j|)

=
∑
i,j

|i⟩ ⟨j| ⊗ (tr(|i⟩ ⟨j|)I − |i⟩ ⟨j|)

=
∑
i,j

|i⟩ ⟨j| ⊗ tr(|i⟩ ⟨j|)I −
∑
i,j

|i⟩ ⟨j| ⊗ |i⟩ ⟨j|)

=
∑
i

|i⟩ ⟨i| ⊗ I − |Ω⟩ ⟨Ω|

= I − |Ω⟩ ⟨Ω| = I − d |Ω′⟩ ⟨Ω′| ,

where |Ω′⟩ = 1√
d

∑
i |ii⟩. Since λmin(CΛ) ≤

⟨Ω′|CΛ |Ω′⟩ < 0, Λ is not completely positive.

The positivity of a state under the partial application
of the reduction map can be equivalently formulated, as
presented below.
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Proposition 7. (Reduction criterion) Consider a
bipartite state ρAB. The following conditions are
equivalent:

1. (I ⊗ Λ)ρAB ≥ 0.

2. ρA ⊗ I ≥ ρAB.

Proof. Let
∑
i |ui⟩ ⟨ui| be the spectral decomposition of

ρAB , where |ui⟩s are (possibly) unnormalized vectors,
and suppose that |ui⟩ =

∑
a,b u

a,b
i |a⟩ |b⟩, where |a⟩s and

|b⟩s form a basis for HA and HB respectively. Then we
have:

(I ⊗ Λ)ρAB

= (I ⊗ Λ)
∑
i

∑
a,b,c,d

ua,bi uc,di (|a⟩ ⟨c| ⊗ |b⟩ ⟨d|)

=
∑
i

∑
a,b,c,d

ua,bi uc,di |a⟩ ⟨c| ⊗ (tr(|b⟩ ⟨d|)I − |b⟩ ⟨d|)

= ρA ⊗ I − ρAB .

□
The next proposition shows that the set of positive

but not completely positive maps is not closed under the
composition of maps.

Proposition 8. The composition of the transpose and
the reduction map is a completely positive map.

Proof. First note that θΛ = Λθ. The Choi matrix
corresponding to θΛ is:

CθΛ =
∑
i,j

|i⟩ ⟨j| ⊗ θΛ(|i⟩ ⟨j|)

=
∑
i,j

|i⟩ ⟨j| ⊗ (tr(|i⟩ ⟨j|)I − |j⟩ ⟨i|)

= I −
∑
i,j

|ij⟩ ⟨ji|

We saw earlier that the eigenvalues of the operator∑
i,j |ij⟩ ⟨ji| are ±1, and we know that for a Hermitian

matrix H, H ≤ λmax(H)I. Putting these together, it can
be implied that CθΛ is PSD. □

Breuer-Hall maps (Breuer, 2006; Hall, 2006)
Consider the family of maps defined on L(H) as

TBH(ρ) = tr(ρ)IH − ρ− UρTU†,

for any U : H → H with UT = −U and U†U ≤ I, which
are known as Breuer-Hall maps.

To prove the positivity of TBH , it is enough to prove
that for any unit vector |ψ⟩, TBH(|ψ⟩ ⟨ψ|) is PSD. We
have:

TBH(|ψ⟩ ⟨ψ|) = I − |ψ⟩ ⟨ψ| − U |ψ⟩⟨ψ|U† (6)
= I − |ψ⟩ ⟨ψ| − |ψ̃⟩ ⟨ψ̃| , (7)

where |ψ̃⟩ := U |ψ⟩. On the other hand, since UT = −U ,
we conclude that:

⟨ψ|ψ̃⟩ = ⟨ψ|U |ψ⟩ = −[⟨ψ|U |ψ⟩]T = 0,

which implies the orthogonality of |ψ⟩ and |ψ̃⟩. We
know that the set {|ψ⟩ , |ψ̃⟩

||ψ̃⟩| } can be extended to an

orthonormal basis {|ψ⟩ , |ψ̃⟩
||ψ̃⟩| , |ϕ1⟩ , . . . , |ϕd−2⟩}, and I can

be written as I = |ψ⟩ ⟨ψ| + |ψ̃⟩⟨ψ̃|
||ψ̃⟩|2 +

∑
i |ϕi⟩ ⟨ϕi|. Hence

(7) can be rewritten as:

TBH(|ψ⟩ ⟨ψ|) = |ψ̃⟩ ⟨ψ̃| 1 − | |ψ̃⟩ |2

| |ψ̃⟩ |2
+
∑
i

|ϕi⟩ ⟨ϕi| . (8)

Since U†U ≤ I,

| |ψ̃⟩ |2 = ⟨ψ̃|ψ̃⟩ = ⟨ψ|U†U |ψ⟩ ≤ ⟨ψ|ψ⟩ = 1,

and the right hand side of (8) will be positive.
Now we prove that TBH is not completely positive in

a similar way to what we did for the reduction map.

CTBH
=
∑
i,j

|i⟩ ⟨j| ⊗ TBH(|i⟩ ⟨j|)

=
∑
i,j

|i⟩ ⟨j| ⊗ (tr(|i⟩ ⟨j|)I − |i⟩ ⟨j| − U |j⟩ ⟨i|U†)

= I − d |Ω′⟩ ⟨Ω′| −
∑
i,j

|i⟩ ⟨j| ⊗ U |j⟩ ⟨i|U†

Moreover,

⟨Ω| (
∑
i,j

|i⟩ ⟨j| ⊗ U |j⟩ ⟨i|U†) |Ω⟩

=
∑
ℓ

⟨ℓℓ| (
∑
i,j

|i⟩ ⟨j| ⊗ U |j⟩ ⟨i|U†)
∑
k

|kk⟩

=
∑
i,j,ℓ,k

⟨ℓ|i⟩ ⟨j|k⟩ ⊗ ⟨ℓ|U |j⟩ ⟨i|U†|k⟩

=
∑
i,j

⟨i|U |j⟩ ⟨i|U†|j⟩

=
∑
i,j

UijU
†
ij =

∑
i,j

−UijUij ,

where the last equality is derived by the fact that U is
antisymmetric. Therefore,

⟨Ω′|CTBH
|Ω′⟩ = 1 − d+

∑
i,j |Uij |2

d
.

Note that U†U ≤ I implies that (U†U)jj ≤ 1 for all j’s.
Hence,

d ≥
∑
j

(U†U)jj =
∑
i,j

U†
jiUij =

∑
i,j

UijUij =
∑
i,j

|Uij |2.
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For d > 2, ⟨Ω′|CTBH
|Ω′⟩ < 0 and consequently λmin < 0,

which implies that CTBH
is not PSD.

When d is even, we know that there are anti-symmetric
unitaries Ud×d, that could be constructed using the
anti-symmetric unitary D =

∑ d
2
k=0 |2k⟩ ⟨2k + 1| −

|2k + 1⟩ ⟨2k|. In fact, for an arbitrary real unitary Vd×d,
V DV † is an anti-symmetric unitary.

Before proceeding to the next example, it is worth
mentioning that there is a well established correspon-
dence between linear superoperators and biforms. Let
R[x, y] be the vector space of polynomials in the variables
x := (x1, . . . , xn) and y := (y1, . . . , ym), and R[x, y]k1,k2

be the subspace of biforms of bidegree (k1, k2), that is
polynomials in R[x, y] that are homogeneous of degree
k1 and k2 in x and y, respectively.

In the case of real vector spaces, we can define this
bijection µ : L(Sn,Sm) → R[x, y]2,2, where Sn denotes
the set of all symmetric n× n real matrices, as:

µ(Φ) = pΦ(x, y) = ⟨y| Φ(|x⟩ ⟨x|) |y⟩ .

The following theorem shows that through this corre-
spondence, (complete) positivity has a nice translation
within the realm of biforms.

Theorem 9. Let Φ : Sn → Sm be a linear map. Then
(Klep et al., 2019):

1. Φ is positive iff pΦ is nonnegative.

2. Φ is completely positive iff pΦ is a sum of squares.

Choi map (Choi, 1975b) Choi proved that there is a
non-negative biquadratic form that can not be expressed
as sum of squares. The corresponding superoperator Φ :
M3(R) → M3(R) can be written as:

X =

 x11 x12 x13

x21 x22 x23

x31 x32 x33


7→ Φ(X) =

 x11 + x33 −x12 −x13

−x21 x22 + x11 −x23

−x31 −x32 x33 + x22

 .

There are generalizations of the original Choi map that
are known as Choi-type maps. The reader can find a list
of different variations of Choi-type maps in (Ha and Kye,
2012).

Positive maps based on UPBs To introduce this
family of maps, we need to first, introduce the notion of
an unextendible product basis.

Definition Let H = HA⊗HB be a bipartite system. An
unextendible product basis (UPB) S is a set of orthogonal
product vectors such that Span(S) is a proper subset of
H, and (Span(S))⊥ contains no product vector (Bennett
et al., 1999).

The reader can find some examples of UPBs in (Bennett
et al., 1999; Terhal, 2001). Suppose that S = {|ψi⟩ =
|αi⟩ |βi⟩}ni=1 is a UPB. We define a bipartite state ρAB
as follows:

ρ = 1
dim H − |S|

(
IAB −

∑
i

|αi⟩ ⟨αi| ⊗ |βi⟩ ⟨βi|

)
. (9)

ρ is a projection on Span(S)⊥, hence its range contains
no products, and this implies that ρ is entangled. For this
entangled state, we know that an entanglement witness
exists. One can prove that the following Hermitian
operator is an entanglement witness for ρ.

H =
|S|∑
i=1

|ψi⟩ ⟨ψi| − dϵ|Ψ⟩⟨Ψ|,

where |Ψ⟩ is a maximally entangled state s.t.

⟨Ψ|ρ|Ψ⟩ > 0, (10)

and

ϵ = min
|ϕA⟩⊗|ϕB⟩

|S|∑
i=1

|⟨ϕA | αi⟩|2 |⟨ϕB | βi⟩|2 , (11)

where the minimum is taken over all pure states |ϕA⟩ ∈
HA and |ϕB⟩ ∈ HB . For any unextendible product basis
S it is possible to find a maximally entangled state |Ψ⟩
such that (10) holds.

To prove that H is an entanglement witness we need
to show that tr(H ρ) < 0 and for any separable state
σ, tr(Hσ) ≥ 0. Since ρ is a projector on Span(S)⊥,
tr(
∑
i |ψi⟩ ⟨ψi| ρ) = 0, and since (10) holds, we conclude

that tr(−dϵ |Ψ⟩ ⟨Ψ| ρ) < 0, which implies that tr(H ρ) <
0. Note that ϵ > 0. It is because of the fact that
the function |ϕA⟩ |ϕB⟩ 7→

∑|S|
i=1 |⟨ϕA | αi⟩|2 |⟨ϕB | βi⟩|2

is continuous and the set of all product vectors is
compact, hence the minimum is taken by a product
vector |ϕA⟩ |ϕB⟩, and if the value of function for this
product vector is zero, it contradicts the fact that S is a
UPB.

To prove that for all separable states σ, tr(Hσ) ≥ 0, it
is enough to show that for all vectors |ϕA⟩ and |ϕB⟩,

tr(H |ϕA⟩ ⟨ϕA| ⊗ |ϕB⟩ ⟨ϕB |) ≥ 0.

For a maximally entangled state |Ψ⟩, we have
|⟨Ψ | ϕA⟩ ⊗|ϕB⟩ |2 ≤ 1

d . Therefore:

tr(H |ϕA⟩ ⟨ϕA| ⊗ |ϕB⟩ ⟨ϕB |)

= tr((
|S|∑
i=1

|ψi⟩ ⟨ψi| − dϵ|Ψ⟩⟨Ψ|) |ϕA⟩ ⟨ϕA| ⊗ |ϕB⟩ ⟨ϕB |)

=
|S|∑
i=1

|⟨ϕA | αi⟩|2 |⟨ϕB | βi⟩|2 − dϵ |⟨Ψ | ϕA⟩ ⊗|ϕB⟩ |2

≥ ϵ− dϵ
1
d

= 0.
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Now, using the Choi–Jamiolkowski isomorphism we can
find the positive map corresponding to the witness H.

IV. DUAL OF A MAP

In this section, we introduce the notion of the dual of
a linear map, which will be important for the rest of our
discussion.

Proposition 10. Let H1 and H2 be two (finite
dimensional) Hilbert spaces. For any linear map T :
H1 → H2, there exist a unique linear map T ∗ : H2 → H1
such that for all x ∈ H1 and y ∈ H2,

⟨Tx, y⟩H2
= ⟨x, T ∗y⟩H1

, (12)

where ⟨., .⟩Hi
denotes the inner product over the space

Hi. The map T ∗ is called the dual of T .

One can see that for a Hilbert space H, the map ⟨., .⟩ :
L(H) × L(H) → C which is defined as

⟨A,B⟩ := tr(AB†),

is an inner product on L(H). Thus, for a map Φ :
L(H) → L(H′) we can rewrite Equation (12) as

tr(Φ(X)Y †) = tr(X(Φ∗(Y ))†).

Furthermore, note that

Φ(|i⟩⟨j|)k,l = ⟨k|Φ(|i⟩⟨j|)|l⟩
= tr(Φ(|i⟩⟨j|)|l⟩⟨k|)
= tr(|i⟩⟨j|(Φ∗(|k⟩⟨l|))†)
= ⟨i|Φ∗(|k⟩⟨l|)|j⟩
= Φ∗(|k⟩⟨l|)i,j ,

which can be used to find the dual of a given map Φ.

Example We can see that the transposition, reduction
and Breuer-Hall maps are self-dual, meaning that they
are equal to their duals. However, the Choi map is not
self-dual, since it maps |0⟩ ⟨0| to 1

2 (|0⟩ ⟨0| + |2⟩ ⟨2|), while
its dual maps |0⟩ ⟨0| to 1

2 (|0⟩ ⟨0| + |1⟩ ⟨1|).

Proposition 11. 1. Φ is positive iff Φ∗ is positive.

2. Φ is completely positive iff Φ∗ is completely positive.

Proof. 1. Φ : L(HA) → L(HB) is positive iff for all
|x⟩ ∈ HA, Φ(|x⟩ ⟨x|) ≥ 0 iff for all |x⟩ ∈ HA and
|y⟩ ∈ HB ,

tr(Φ(|x⟩ ⟨x|) |y⟩ ⟨y|) = tr(|x⟩ ⟨x| Φ∗(|y⟩ ⟨y|)) ≥ 0,

iff Φ∗ is positive.

2. Φ is completely positive iff for any Hilbert space
HC , the map (IC ⊗ Φ) is positive. From the
previous part we know that (IC ⊗ Φ) is positive
iff (IC ⊗ Φ)∗ = (IC ⊗ Φ∗) is positive.

□
Henceforth, we use an alternative construction for

establishing an entanglement witness from a positive but
not completely positive maps, using the concept of the
dual of a map.

Proposition 12. The map C : L(LB ,LA) → L(HA ⊗
HB), which is defined as

C(Φ) =
dA∑
i,j=1

|i⟩ ⟨j| ⊗ Φ∗(|i⟩ ⟨j|), (13)

defines a bijection between the set of all positive but not
completely positive maps in L(LB ,LA) and the set of all
entanglement witnesses in L(HA ⊗ HB).

Proof. The statement is a direct implication of Proposi-
tions 11 and 4. □

Proposition 13. Let Φ : L(HB) → L(HA) be a positive
but not completely positive map, and ρ ∈ L(HA⊗HB) be
a state such that tr(C(Φ)ρ) < 0. Then, ρ ̸∈ PPΦ.

Proof. Note that

tr(C(Φ)ρ) = tr((I ⊗ Φ∗) |Ω⟩ ⟨Ω| ρ) = tr(|Ω⟩ ⟨Ω| (I ⊗ Φ)ρ).

Thus, if tr(C(Φ)ρ) < 0, (I ⊗ Φ)ρ is not positive, i.e.
ρ ̸∈ PPΦ. □

The above proposition justifies our preference for using
the latter version of the Choi-Jamiołkowski isomorphism,
as the witness criterion obtained from a positive map
using the latter version would have a canonical relation
with the PPΦ criterion associated to the map.

Proposition 14. Let Φ : L(HB) → L(HA) be a positive
but not completely positive map. Then PPΦ is a proper
subset of D.

Proof. Since Φ is not completely positive, by Proposition
11, we conclude that Φ∗ is not completely positive either.
Thus, the Choi matrix of Φ∗, which is CΦ∗ = (I ⊗
Φ∗) |Ω⟩ ⟨Ω| is not PSD, and has a negative eigenvalue
corresponding to an eigenvector |v⟩ ∈ HA ⊗ HB . Note
that

tr(CΦ∗ |v⟩ ⟨v|) = tr(|Ω⟩ ⟨Ω| (I ⊗ Φ) |v⟩ ⟨v|) < 0.

Since |Ω⟩ ⟨Ω| is PSD, then (I ⊗ Φ) |v⟩ ⟨v| is not PSD,
which implies that |v⟩⟨v|

||v⟩|2 ̸∈ PPΦ. □

V. ENTANGLEMENT WITNESSES AND SDP’S

In this section, we discuss another method for
obtaining an entanglement witness which detects a state
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ρAB when ρAB ̸∈ PPΦ for a positive but not completely
positive map Φ. In this method, we use semidefinite
programming, that is an optimisation paradigm in which
linear functions are optimized over spectrahedra. We
assume that the reader is familiar with the basic concepts
of semidefinite programming, and if it is not the case,
we refer her to relevant references such as (Boyd and
Vandenberghe, 2004).

Let Φ : L(HB) → L(HA) be a positive but
not completely positive map. Consider the following
optimization problem:

max
t

t

s.t. (IA ⊗ Φ)ρAB ≥ tIAB .
(14)

We can see that the above optimization problem is a SDP,
and there exist methods (e.g. interior point methods)
that can be used to efficiently solve the problem.

The above SDP computes the minimum eigenvalue of
(IA ⊗ Φ)ρAB . Therefore, the optimal value of the above
SDP, which is denoted by t∗, is negative iff (IA ⊗ Φ)ρAB
has a negative eigenvalue, iff ρAB ̸∈ PPΦ.

Now, we write the dual of the above SDP:

min
W

tr (W (IA ⊗ Φ)ρAB)

s.t. tr(W ) = 1,
W ≥ 0 .

(15)

Since both primal and dual are strictly feasible,
by the Slater’s theorem the strong duality holds,
and we conclude that ρ ̸∈ PPΦ if and only if
tr (W ∗(IA ⊗ Φ)ρAB) = tr ((IA ⊗ Φ∗)W ∗ρAB) < 0,
where W ∗ is the optimal solution of the dual problem.

Moreover, for any pure product state |x⟩ ⟨x| ⊗ |y⟩ ⟨y|,

tr ((IA ⊗ Φ∗)W ∗ |x⟩ ⟨x| ⊗ |y⟩ ⟨y|)
= tr (W ∗(IA ⊗ Φ) |x⟩ ⟨x| ⊗ |y⟩ ⟨y|)
= tr (W ∗ |x⟩ ⟨x| ⊗ Φ(|y⟩ ⟨y|)) ≥ 0.

In fact, we can similarly show that for any state ρ ∈
PPΦ, tr ((IA ⊗ Φ∗)W ∗ρ) ≥ 0. Therefore, if ρAB is an
entangled state that is not in PPΦ, (IA ⊗ Φ∗)W ∗ is an
entanglement witness, witnessing ρAB .

Proposition 15. Let W ∗ be the optimal solution of the
dual problem, and define Πλmin to be the projector on
the eigenspace of the minimum eigenvalue of the operator
(IA ⊗ Φ)ρAB. Then, Im(W ∗) ⊆ Supp(Πλmin).

Proof. Define M := (IA ⊗ Φ)ρAB , and let λmin be the
minimum eigenvalue of M , which is equal to the optimal
value of the primal. Since the strong duality holds, we
have λmin = tr(W ∗M), which can be rewritten as

tr(W ∗(M − λminIAB)) = 0.

Since W ∗ and M − λminIAB are both PSD, we conclude
that W ∗(M − λminIAB) = (M − λminIAB)W ∗ = 0, and

using the fact that all the non-zero eigenvalues of M −
λminIAB are strictly positive, and ker(M − λminIAB) =
Supp(Πλmin), it is implied that Im(W ∗) ⊆ Supp(Πλmin).
□

VI. PROPERTIES OF ENTANGLEMENT CRITERIA AND
THEIR CONNECTIONS

A. Properties of PPΦ’s

We defined the PPΦ set in Section I.B for any positive
but not completely positive map Φ, and showed that
SEP ⊆ PPΦ. We know, in particular, that SEP ⊆ PPT.
It is an interesting question to investigate whether or not
this inclusion is strict. As we will see in the following, the
inclusion is strict unless the local dimensions are (2, 2),
(2, 3) and (3, 2).

The next proposition shows that the set of all PPΦ
criteria is in some sense complete, meaning that if a
state ρAB is entangled, there exists a positive but not
completely positive map Φ : L(HB) → L(HA) such that
(IA ⊗ Φ)ρAB is not PSD.

Theorem 16. A state ρAB is separable iff for all positive
maps Φ : L(HB) → L(HA), ρAB ∈ PPΦ (Horodecki
et al., 1996).

Proof. The proof of the "only if " direction is obvious. For
the other direction, suppose that the state ρAB ̸∈ SEP.
Then, by Proposition 3, there exists an entanglement
witness W detecting ρAB . Using the Choi–Jamiolkowski
isomorphism, we know that there exists a positive map
Φ : L(HA) → L(HB) such that:

W = (IA ⊗ Φ) |Ω⟩ ⟨Ω| .

Then we have:

0 > tr(WρAB) = tr((I ⊗ Φ) |Ω⟩ ⟨Ω| ρAB)
= tr(|Ω⟩ ⟨Ω| (I ⊗ Φ∗)ρAB),

which yields (I ⊗ Φ∗)ρAB ≱ 0, where Φ∗ : L(HB) →
L(HA) is a positive map. □

Definition A linear map Φ : L(HA) → L(HB) is called
decomposable if it can be written as:

Φ = T1 + T2θ,

where T1 and T2 are completely positive maps, and θ is
the transposition map.

Theorem 17. All positive maps are decomposable when
(dim(HA), dim(HB)) ∈ {(2, 2), (2, 3), (3, 2)} (Woronow-
icz, 1976).

Proposition 18. If ρAB ∈ PPT, then for any
decomposable map Φ : L(HB) → L(HA), ρAB ∈ PPΦ.
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Proof. We have

(I ⊗ Φ)ρAB = (I ⊗ (T1 + T2θ))ρAB
= (I ⊗ T1)ρAB + (I ⊗ T2)(I ⊗ θ)ρAB .

Since ρAB ∈ PPT, (I ⊗ θ)ρAB ≥ 0, and we know
that the positivity of matrices is preserved under the
partial application of completely positive maps. Hence
(I ⊗ Φ)ρAB ≥ 0, and ρAB ∈ PPΦ. □

Proposition 19. The reduction criterion is weaker than
the PPT criterion, meaning that PPT ⊆ PPΛ.

Proof. Once we can prove that the reduction map
is decomposable, the above proposition becomes an
immediate implication of Proposition 18. To show that
Λ is decomposable, note that:

θ ◦ Λ ◦ θ(ρ) = θ ◦ Λ(ρT )
= θ(tr(ρT )I − ρT )
= tr(ρ)I − ρ

= Λ(ρ)

We saw in Proposition 8 that θΛ is completely positive,
which implies Λ is decomposable. □

Remark Although the reduction map is decomposable,
and the reduction criterion is weaker than the PPT
criterion, it plays an important role in entanglement
distillation. In fact, it was proved in (Horodecki and
Horodecki, 1999) that any state violating the reduction
criterion can be distilled.

Putting together Theorems 16, 17 and Proposition 18,
the following theorem is obtained.

Theorem 20. A state ρAB acting on C2 ⊗C2 or C2 ⊗C3

is separable iff its partial transposition is PSD, but in
higher dimensions, (I ⊗ θ)ρAB ≥ 0 is not a sufficient
condition for separability (Horodecki et al., 2001).

Knowing that PPT is strictly greater than SEP
in higher dimensions, we came up with the idea of
intersecting PPT with other PPΦ’s in order to find
better approximations of SEP. To that purpose, I
undertook a numerical simulation to estimate the volume
of PPΦs for the above-mentioned positive maps. Volumes
are calculated as the fraction of the number of states
that satisfy the PPΦ criteria in a random sample of
quantum states. I used the transpose map, reduction
map, a Choi-type map (the original map introduced by
Choi), a Breuer-Hall map (only for cases where the local
dimension is even ≥ 4, using the anti-symmetric unitary
D =

∑ d
2
k=0 |2k⟩ ⟨2k + 1| − |2k + 1⟩ ⟨2k|), and a special

map based on UPBs (using the first example of such maps
discussed in (Terhal, 2001)), which we call it the Terhal
map henceforth.

The results are obtained in each dimension with a
sample size of 100000 density matrices generated at
random according to the Haar measure, using the random
density matrix generator provided in ‘toqito’ (Russo,
2021); a software tool for studying quantum information
theory.

Figure 2 depicts the results. I also tried to find states
that are in PPT, but they are not in other PPΦs, which
was not successful as the number of PPT samples is too
small.

As we proved earlier, the PPΦ corresponding to the
reduction map contains PPT, which agrees with our
results. We also expect that the volume of the PPΦ
associated to the Breuer-Hall map be less than the
volume of the PPΦ associated to the reduction map,
which is consistent with the results.

Let us denote the Terhal map by Φ. As can be seen,
all of our samples satisfy the PPΦ criteria. We do know,
however, that there exist PPT entangled states that are
not in PPΦ. As a result, PPΦ cuts PPT, and their
intersection is strictly smaller than PPT.

I also tried to illustrate this cut by demonstrating PPΦ
and PPT in the convex hull of three well-chosen states.
Our three states are an adequate convex combination of a
state in SEP, a state in PPT but not in PPΦ, and a state
in PPΦ but not in PPT. The maximally mixed state I

9 is
utilised for the first state, and the state used to define the
Terhal map for the second one. The third state belongs
to the Werner state family, which are defined as

ρAB = 1
d2 − dα

(Id2×d2 − αFAB) ,

where FAB =
∑
ij |i⟩ ⟨j|A ⊗ | j⟩ ⟨ i|B , dim(HA) =

dim(HB) = d, and α ∈ [−1, 1]. It is known that all
Werner states with p < 1

2 are entangled if we write α as

α = ((1 − 2p)d+ 1)
(1 − 2p+ d) .

These entangled Werner states violate the PPT condition.
Let ρ′ be the 9 × 9 Werner state with α = 0.6. Then

we define our states σi for i = 1, 2, 3 as:

σ1 = 0.07(0.01 I9 + 0.99ρ) + 0.93(0.003ρ′ + 0.997ρ),

σ2 = ρ, σ3 = 0.004ρ′ + 0.996ρ.

In Figure 3, we represented the intersection of PPT and
PPΦ with the convex hull of the states {σi}i. It is obvious
that PPT ∩ PPΦ is strictly smaller than PPT, and using
this set as an approximation of SEP leads to a better
relaxation. It is also noteworthy that the membership of
this set can be determined efficiently.

We end this part with a characterization of PPΦ
in terms of entanglement witnesses. The following
proposition is the generalization of a result stated in
(Horodecki et al., 2009).
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FIG. 2 Computing the volume of PPΦ’s

FIG. 3 The set of states ρ = (1 − p − q)σ1 + pσ2 + qσ3 and
its intersection with PPΦ and PPT.

Proposition 21. For any positive but not completely
positive map Φ : L(HB) → L(HA), the family of
witnesses of the form

W|ψ⟩ = (I ⊗ Φ∗) |ψ⟩ ⟨ψ| ,

where |ψ⟩ is an entangled vector in HA⊗HA, are enough
to describe PPΦ, meaning that for ρAB ̸∈ PPΦ, if and
only if there exists a member of this family witnessing
ρAB.

Proof. Suppose that ρ ̸∈ PPΦ. Then (I ⊗ Φ)ρ ≱ 0, and
(I⊗Φ)ρ has an eigenvector |ψ⟩ ∈ HA⊗HA corresponding
to a negative eigenvalue, which is necessarily entangled.
Thus, we have

0 > tr((I ⊗ Φ)ρ |ψ⟩ ⟨ψ|) = tr((I ⊗ Φ∗) |ψ⟩ ⟨ψ| ρ).

On the other hand, if W|ψ⟩ = (I ⊗Φ∗) |ψ⟩ ⟨ψ| is a witness
for a state ρ, then tr((I⊗Φ∗) |ψ⟩ ⟨ψ| ρ) < 0, implying that
(I ⊗ Φ)ρ ≱ 0. □

B. Properties of SDP Witnesses

In Section V, We discussed a method to find an
entanglement witnessW for a positive but not completely

positive map Φ, witnessing a given state ρ ̸∈ PPΦ.
When we obtain such a witness, it is possible to find
a positive but not completely positive map Φ′ using the
Choi–Jamiolkowski isomorphism, such that J (Φ′) = W .
We might ask what is the relationship between the
volume of PPΦ and PPΦ′.

In order to answer this question, I used some numerical
simulations. First, I chose the initial entangled state ρ to
be the maximally entangled state 1

d |Ω⟩ ⟨Ω|. For each
map Φ, I estimated the volume of PPΦ and PPΦ′ in
dimensions (2, 2) and (3, 3), where Φ′ is the map obtained
from the above procedure. The sample size of 10000
density matrices has been chosen, and for each map, the
matrices has been sampled separately. Results are shown
in Figure 4.

Then, I repeated the procedure by changing the initial
state to be a random entangled state that is not in PPΦ.
For all the considered maps, except the transposition,
remained equal. However, I observed that the volume of
PPT varies when I change the initial state, and there
exist initial states such that starting from them, the
volume of PPT′ is equal to the volume of PPT. For
the other cases, I wondered it might be the case that
Φ = Φ′, and the equality of the volumes comes from this
equality. To answer this question, I computed J (Φ) and
checked whether it is an optimal solution of the dual SDP.
The answer was positive for the reduction, Breuer-Hall
and Choi map, but it was negative for the transposition
and Terhal map. Therefore, the entanglement witnesses
obtained from the first three maps by Choi–Jamiołkowski
isomorphism are SDP witnesses.

We also conjectured that the SDP witnesses are
optimal, in the sense that for any SDP witness W , there
are no other witness W ′ such that W ′ witnesses all the
entangled states that are witnessed by W . To verify this
hypothesis, I plotted cross-sections of the set of states
and examine whether this optimality holds.

Figure 5 depicts the set of states ρ = (1 − p − q)σ1 +
pσ2 + qσ3, where σ1 is a random state that is not in
PPΦ, σ2 is the state used to define the Terhal map, and
σ3 = 1

1−0.4 ( I
9 − 0.4σ2), and its intersection with PPΦ

and the half-space tr(Wρ) < 0, where W is the witness
obtained from Φ using the initial state σ1. The results
for all the considered map were similar, so we only depict
three examples of the plots when Φ is the transpose map.
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FIG. 4 Comparing the volume of PPΦ and PPΦ′, starting from the maximally entangled state. Note that different samples
have been used for different maps.

As we can see, the SDP witnesses seem to be optimal.
We finish this section by characterizing the SDP

witnesses obtained from the transpose map when the
local dimensions are (2, 2). We need the following result
to prove our statements.

Theorem 22. The partial transpose of any entangled
two-qubit state is of full rank and has only one negative
eigenvalue (Sanpera et al., 1998; Verstraete et al., 2001).

Proposition 23. Let W ∈ L(C2 → C2) be a SDP
witness obtained from the transpose map with the initial
state ρ ∈ L(C2 ⊗ C2). Then W is of the form

W = (I ⊗ θ) |ψ⟩ ⟨ψ| ,

where θ is the transpose map and |ψ⟩ is an entangled
vector in C2 ⊗ C2.

Proof. Let W ∗ be the optimal solution of the dual SDP
problem. From Proposition 15, we know that Im(W ∗) ⊆
Supp(Πλmin). Since by Theorem 22, Supp(Πλmin) is one
dimensional and W ∗ is a PSD operator whose trace is
equal to one, we conclude that W ∗ = Πλmin . Note that
the eigenvector of (I ⊗T )ρ corresponding to its negative
eigenvalue is an entangled vector. The proof is complete
by noting that the SDP witness is derived by (I ⊗T )W ∗.
□

Proposition 24. Let W be the SDP witness obtained
from the transpose map θ : L(C2) → L(C2) with the
initial state 1

2 |Ω⟩ ⟨Ω|, where |Ω⟩ = |00⟩ + |11⟩. Consider
the action of the group of the local unitaries {U1 ⊗
U2 | U1, U2 : C2 → C2 are unitaries} on the set of
the Hermitian operators over C4, which is defined as
X 7→ (U1⊗U2)X(U1⊗U2)†. The set of the SDP witnesses
obtained from the transpose map with pure states as their
initial states is equal to the orbit of W under this group
action.

Proof. One can see that for all entangled vectors |ψ⟩ =
c0 |00⟩ + c1 |11⟩, where c0, c1 ≥ 0 such that c0

2 + c1
2 = 1,

the eigenvectors corresponding to the negative eigenvalue
of (I ⊗ θ) |ψ⟩ ⟨ψ| are the same. Proof of the Proposition
23 shows that we can conclude that the SDP witnesses
obtained from the transpose map with the initial state

|ψ⟩ ⟨ψ| are the same, and equal to W . Using the Schmidt
decomposition, we know that we can write any two qubit
entangled vector |ϕ⟩ as

|ϕ⟩ = (U1 ⊗ U2)(c0 |00⟩ + c1 |11⟩),

where U1 and U2 are unitaries and |ψ⟩ = (c0 |00⟩+c1 |11⟩)
is entangled. Note that:

λmin((I ⊗ θ) |ϕ⟩ ⟨ϕ|) = λmin((I ⊗ θ) |ψ⟩ ⟨ψ|),

as one can see that they are equal up to local unitaries,
and in particular, have the same spectrum. Thus, we
have

λmin((I ⊗ θ) |ϕ⟩ ⟨ϕ|)
= λmin((I ⊗ θ) |ψ⟩ ⟨ψ|)
= tr(W |ψ⟩ ⟨ψ|)
= tr((U1 ⊗ U2)W (U1 ⊗ U2)†(U1 ⊗ U2) |ψ⟩ ⟨ψ| (U1 ⊗ U2)†)
= tr((U1 ⊗ U2)W (U1 ⊗ U2)† |ϕ⟩ ⟨ϕ|),

which implies that (U1 ⊗ U2)W (U1 ⊗ U2)† is an optimal
solution for the dual SDP. □

VII. CONCLUSION AND FUTURE WORK

The problem of detection of the entanglement is a
core problem in quantum information theory. Although
solving this problem for mixed quantum states is proven
to be NP -hard, several entanglement criteria have been
developed during the past 30 years, and the study is still
ongoing.

In this project we studied two types of entanglement
criteria, namely criteria based on positive but not
completely positive maps and entanglement witnesses.
The study of these criteria have potential connections
to various topics in quantum theory, ranging from
the physical concept of time reversal to the task of
entanglement distillation, as well as connections to other
fields of mathematics and computer science, such as
algebraic geometry and semidefinite programming.

The two types of criteria that were studied are related
to each other and this relationship can be used to find
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(a) (b) (c)

FIG. 5 The set of states ρ = (1 − p − q)σ1 + pσ2 + qσ3 and its intersection with PPT (red area) and the half-space tr(W ρ) < 0
(yellow area). The x and y-axis correspond to p and q, respectively. In each plot, the state σ1 has been chosen randomly.

better entanglement criteria. In particular, we discussed
a new method for finding entanglement witnesses using
semidefinite programming, that might help us to find
improved families of both criteria for detection of the
entanglement.

Some of the possible directions for the continuing the
present work are as follows:

1. extending the Proposition 24 to the set of mixed
states when the local dimensions are (2, 2) and
generalising it to higher dimensions.

2. proving or disproving the hypothesis that the SDP
witnesses are optimal.

3. studying the relationship between PPΦ and PPΦ′

which was discussed in Section VI.B.

4. finding new families of entanglement criteria
based on positive but not completely positive
maps or entanglement witnesses: Only a few
number of positive but not completely positive
maps or families of entanglement witnesses are
currently known, and some of the recent works
in the literature such as (Klep et al., 2019;
Siudzińska, 2022) are concerned about introducing
new examples.

5. understanding the geometry of PPΦ’s: As our
numerical simulations show, it seems that the
geometric properties of the known positive maps
are different, and explaining some of these
geometric attributes can help us in obtaining a
better understanding of SEP.
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