

Positive but not Completely Positive Maps

Ali Almasi

Institut Polytechnique de Paris

[Introduction](#page-1-0)

<u> 1989 - Johann Barnett, mars et al. 19</u>

Quantum mechanics is a mathematical framework for describing the laws of quantum physics.

This framework is formulated using the language of dynamical systems.

To specify this dynamical system we need to specify

- its state space,
- and its transition rule.

Quantum mechanics is a mathematical framework for describing the laws of quantum physics.

This framework is formulated using the language of dynamical systems.

To specify this dynamical system we need to specify

- its state space,
- and its transition rule.

Keep in mind that any physical system is associated with a Hilbert space *H*, over the field of complex numbers.

In our cases, you can think of these Hilbert spaces as \mathbb{C}^d .

How can we formulate a composite system, consisting of two subsystems *A* and *B*, corresponding to Hilbert spaces \mathcal{H}_A and \mathcal{H}_B ?

The Hilbert space associated to the composite system will be

 $\mathcal{H}_{AB} = \mathcal{H}_A \otimes \mathcal{H}_B$.

Remember that:

$$
\mathbf{A} \otimes \mathbf{B} = \left[\begin{array}{ccc} a_{11} \mathbf{B} & \cdots & a_{1n} \mathbf{B} \\ \vdots & \ddots & \vdots \\ a_{m1} \mathbf{B} & \cdots & a_{mn} \mathbf{B} \end{array} \right].
$$

For a physical system associated with a Hilbert space *H*, a state of the system is a matrix $\rho : \mathcal{H} \to \mathcal{H}$, such that:

- 1. $tr(\rho) = 1$
- 2. *ρ* is positive semidefinite (PSD), denoted as *ρ ≥* 0.

These matrices are called *density matrices (operators)*.

Dynamics of our system should be defined by superoperators $\Phi : \mathcal{L}(\mathcal{H}_1) \to \mathcal{L}(\mathcal{H}_2).$

Definition

A superoperator $\Phi : \mathcal{L}(\mathcal{H}_A) \to \mathcal{L}(\mathcal{H}_B)$ is called **positive**, if for any *ρ* ∈ $\mathcal{L}(\mathcal{H}_A)$ with ρ ≥ 0, $\Phi(\rho)$ ≥ 0.

Dynamics of our system should be defined by superoperators $\Phi : \mathcal{L}(\mathcal{H}_1) \to \mathcal{L}(\mathcal{H}_2).$

Definition

A superoperator $\Phi : \mathcal{L}(\mathcal{H}_A) \to \mathcal{L}(\mathcal{H}_B)$ is called **positive**, if for any *ρ* ∈ $\mathcal{L}(\mathcal{H}_A)$ with ρ ≥ 0, $\Phi(\rho)$ ≥ 0.

Definition

A superoperator $\Phi : \mathcal{L}(\mathcal{H}_A) \to \mathcal{L}(\mathcal{H}_B)$ is called **completely positive**, if for any Hilbert space H_C and for all $\rho \in \mathcal{L}(\mathcal{H}_A \otimes \mathcal{H}_C)$ with $\rho \geq 0$,

 $(\Phi \otimes I_C)(\rho) > 0.$

Is it hard to check whether a map is completely positive?

Is it hard to check whether a map is completely positive? No! Using the **Choi matrix**:

$$
C_{\Phi} := \left(\begin{array}{cccc} \Phi(|0\rangle\langle 0|) & \Phi(|0\rangle\langle 1|) & \dots & \Phi(|0\rangle\langle d-1|) \\ \Phi(|1\rangle\langle 0|) & \Phi(|1\rangle\langle 1|) & \dots & \vdots \\ \vdots & \vdots & \ddots & \vdots \\ \Phi(|d-1\rangle\langle 0|) & \dots & \dots & \Phi(|d-1\rangle\langle d-1|) \end{array}\right)
$$

Theorem

 $Φ$ *is completely positive iff* $C_Φ$ *is PSD.*

A simple observation:

For two Hilbert spaces \mathcal{H}_1 and \mathcal{H}_2 , there exists a vector $v \in \mathcal{H}_1 \otimes \mathcal{H}_2$, such that

$$
v\neq v_1\otimes v_2,
$$

for all $v_1 \in \mathcal{H}_1$ and $v_2 \in \mathcal{H}_2$. For example

$$
\mathbb{C}^2 \otimes \mathbb{C}^2 \ni \left(\begin{array}{c} \frac{1}{\sqrt{2}} \\ 0 \\ 0 \\ \frac{1}{\sqrt{2}} \end{array} \right) \neq \left(\begin{array}{c} \times \\ \text{y} \end{array} \right) \otimes \left(\begin{array}{c} z \\ t \end{array} \right).
$$

Such vectors are called **entangled**, and anything that is not entangled is called **separable**.

Quantum Entanglement (Density Matrices)

Definition

A state $\rho_{AB} \in \mathcal{L}(\mathcal{H}_A \otimes \mathcal{H}_B)$ of a composite system is called **separable** if it can be written as

$$
\rho_{AB}=\sum_i p_i\sigma_i\otimes \tau_i,
$$

where $\sigma_i \in \mathcal{L}(\mathcal{H}_A)$ and $\tau_i \in \mathcal{L}(\mathcal{H}_B)$ are density matrices for all *i*'s, and p_i 's are positive real numbers with the condition that $\sum_i p_i = 1.$ A state that is not separable, is called **entangled**.

Quantum Entanglement (Density Matrices)

Definition

A state $\rho_{AB} \in \mathcal{L}(\mathcal{H}_A \otimes \mathcal{H}_B)$ of a composite system is called **separable** if it can be written as

$$
\rho_{AB}=\sum_i p_i\sigma_i\otimes \tau_i,
$$

where $\sigma_i \in \mathcal{L}(\mathcal{H}_A)$ and $\tau_i \in \mathcal{L}(\mathcal{H}_B)$ are density matrices for all *i*'s, and p_i 's are positive real numbers with the condition that $\sum_i p_i = 1.$ A state that is not separable, is called **entangled**.

For example, the following state in $\mathcal{L}(\mathbb{C}^2\otimes\mathbb{C}^2)$ is entangled.

$$
\rho = \frac{1}{2} \begin{pmatrix} 1 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 1 \end{pmatrix}
$$

The set of all density matrices over $\mathcal{H}_A \otimes \mathcal{H}_B$ is denoted by

D(*n, m*)*,*

and the set of all separable states by

SEP(*n, m*)*,*

where *n* and *m* are the dimensions of H_A and H_B , respectively.

Theorem

It is NP*-hard to determine whether an arbitrary quantum state within an inverse polynomial distance from* SEP *is entangled.*

There are scenarios that we need to do an optimization over SEP. For example, to measure the amount of entanglement of a state, we want to compute the following quantity:

$$
E_R(\rho_{AB}) := \min_{\sigma_{AB} \in \text{SEP}} S(\rho_{AB} || \sigma_{AB}),
$$

where $S(\rho_{AB}||\sigma_{AB})$, which is called the *relative entropy of the states* ρ_{AB} *and* σ_{AB} is defined as $S(\rho_{AB}||\sigma_{AB}) := \text{tr}(\rho_{AB} \log \rho_{AB}) - \text{tr}(\rho_{AB} \log \sigma_{AB}).$

What can we do?

[Entanglement Detection](#page-16-0)

A simple geometric observation:

- **•** Equip D with the inner product $\langle A, B \rangle := \text{tr}(AB^{\dagger}).$
- SEP is a closed convex set.

Thus, for any *ρ 6∈* SEP, we can separate *ρ* from SEP using a hyperplane. In other words, there exists a Hermitian operator $W \in \mathcal{L}(\mathcal{H}_A \otimes \mathcal{H}_B)$ such that tr($W\rho$) < 0 and tr($W\sigma$) > 0 for all separable states σ .

W is called an **entanglement witness**.

Entanglement Criteria (2)

A simple algebraic observation:

Let $\Phi : \mathcal{L}(\mathcal{H}_B) \to \mathcal{L}(\mathcal{H}_A)$ be a positive but not completely positive map.

■ For any separable state $ρ = ∑_i p_iσ_i ⊗ τ_i$

$$
(\mathcal{I}_A \otimes \Phi) \rho = \sum_i p_i \sigma_i \otimes \Phi(\tau_i) \geq 0.
$$

• Define the set of all states that are **p**ositive under **p**artial application of Φ by

$$
\mathsf{PP}\Phi := \{ \rho_{AB} \in \mathsf{D} \ : \ (\mathcal{I}_A \otimes \Phi) \rho_{AB} \geq 0 \}.
$$

The above set is a proper subset of D.

• And, SEP is contained in PPΦ.

Therefore, any positive but not completely positive map provides an entanglement criterion.

[Properties of the Two Families of](#page-19-0) [Criteria](#page-19-0)

- Do we know examples of positive but not completely positive maps?
- Is it possible to describe SEP with PPΦs?
- Can we compare two criteria?
- Are PPΦs nested or incomparable?
- Are entanglement witnesses and positive but not completely positive maps related?
- Can we characterize PPΦs by entanglement witnesses?

Examples of Positive but not Completely Positive Maps

- The most important example is the **transpose map**, whose corresponding PPΦ is known as PPT.
- The **reduction map**:

$$
\Lambda(\rho) := \mathsf{tr}(\rho) \mathbb{I}_{\mathcal{H}} - \rho
$$

• **Breuer-Hall maps**:

$$
T_{BH}(\rho) = \text{tr}(\rho) \mathbb{I}_{\mathcal{H}} - \rho - U \rho^T U^{\dagger},
$$

for any $U: \mathcal{H} \to \mathcal{H}$ with $U^T = -U$ and $U^{\dagger} U \leq \mathbb{I}$.

• The **Choi map**:

$$
\left(\begin{array}{ccc} x_{11} & x_{12} & x_{13} \\ x_{21} & x_{22} & x_{23} \\ x_{31} & x_{32} & x_{33} \end{array}\right) \mapsto \left(\begin{array}{ccc} x_{11} + x_{33} & -x_{12} & -x_{13} \\ -x_{21} & x_{22} + x_{11} & -x_{23} \\ -x_{31} & -x_{32} & x_{33} + x_{22} \end{array}\right).
$$

Theorem

A state ρ_{AB} *is separable iff for all positive maps* $\Phi : \mathcal{L}(\mathcal{H}_B) \to \mathcal{L}(\mathcal{H}_A)$ *,* ρ_{AB} \in PP Φ .

Theorem

A state ρ_{AB} is separable iff for all positive maps $\Phi : \mathcal{L}(\mathcal{H}_B) \to \mathcal{L}(\mathcal{H}_A)$, $\rho_{AB} \in \text{PP}\Phi$.

Theorem

 A state ρ_{AB} acting on $\mathbb{C}^2\otimes\mathbb{C}^2$ or $\mathbb{C}^2\otimes\mathbb{C}^3$ is separable iff its partial *transposition is PSD, but in higher dimensions,* $(\mathcal{I} \otimes \theta) \rho_{AB} \geq 0$ *is not a sufficient condition for separability.*

In high dimensions, **No!**

Figure 1: The set of states $\rho = (1 - p - q)\sigma_1 + p\sigma_2 + q\sigma_3$ and its intersection with PP Φ and PPT.

Relationships between Witnesses and Maps

• Via **Choi–Jamiołkowski isomorphism**:

$$
\mathcal{C}(\Phi) = \sum_{i,j=1}^{d_A} |i\rangle \langle j| \otimes \Phi^* (|i\rangle \langle j|),
$$

For a state ρ , if tr($C(\Phi)\rho$) < 0, then, $\rho \notin \mathsf{PP}\Phi$.

Relationships between Witnesses and Maps

• Via **Choi–Jamiołkowski isomorphism**:

$$
\mathcal{C}(\Phi) = \sum_{i,j=1}^{d_A} |i\rangle \langle j| \otimes \Phi^* (|i\rangle \langle j|),
$$

For a state $ρ$, if tr($C(Φ)ρ$) < 0, then, $ρ \notin PPΦ$.

• Via **semidefinite programming**: Consider

$$
\begin{array}{ll}\n\max_t & t \\
\text{s.t.} & (\mathcal{I}_A \otimes \Phi) \rho_{AB} \geq t \mathbb{I}_{AB}.\n\end{array}
$$

The dual gives us a witness:

$$
\min_{W} \quad (W(\mathcal{I}_A \otimes \Phi)\rho_{AB})
$$

s.t. $(W) = 1$,
 $W \ge 0$.

(*I^A ⊗* Φ *∗*)*W[∗]* is an entanglement witness.

Characterizing PPΦ **by Entanglement Witnesses**

Theorem

For any positive but not completely positive map Φ *:* $\mathcal{L}(\mathcal{H}_B) \to \mathcal{L}(\mathcal{H}_A)$ *, the family of witnesses of the form*

 $W_{|\psi\rangle} = (\mathcal{I} \otimes \Phi^*) |\psi\rangle \langle \psi|$

where $|\psi\rangle$ *is an entangled vector in* $\mathcal{H}_A \otimes \mathcal{H}_A$ *, are enough to describe* PPΦ*, meaning that ρAB 6∈* PPΦ *if and only if there exists a member of this family witnessing* $ρ_{AB}$ *.*

Theorem

Let W ∈ L(C ² *⊗* C 2) *be a SDP witness obtained from the transpose* $\rho \in \mathcal{L}(\mathbb{C}^2 \otimes \mathbb{C}^2)$ *. Then W is of the form*

 $W = (\mathcal{I} \otimes \theta) \ket{\psi} \bra{\psi},$

where θ is the transpose map and $\ket{\psi}$ is an entangled vector in $\mathbb{C}^2\otimes\mathbb{C}^2$.

Theorem

Let W be the SDP witness obtained from the transpose map $\theta : \mathcal{L}(\mathbb{C}^2) \to \mathcal{L}(\mathbb{C}^2)$ with the initial state $\frac{1}{2} \ket{\Omega} \bra{\Omega}$, where $|\Omega\rangle = |00\rangle + |11\rangle$ *. Consider the action of the group of the local* \mathcal{L} *unitaries* $\{U_1 \otimes U_2 \mid U_1, U_2: \mathbb{C}^2 \rightarrow \mathbb{C}^2 \text{ are unitaries}\}$ on the set of the *Hermitian operators over* C 4 *, which is defined as X 7→* (*U*¹ *⊗ U*2)*X*(*U*¹ *⊗ U*2) *† . The set of the SDP witnesses obtained from the transpose map with pure states as their initial states is equal to the orbit of W under this group action.*

[Conclusion](#page-29-0)

and the contract of

- Recognition of SEP is hard, but we can develop easy necessary conditions.
- Positive but not completely positive maps and entanglement witnesses are two important family of entanglement criteria.
- These two families of criteria are related to each other.
- Semidefinite programming can be used to obtain an optimal family of witnesses.

[Thank you!](#page-31-0)