B ippaRIs

Positive but not Completely Positive Maps

Ali Almasi

Institut Polytechnique de Paris



Introduction




Quantum Mechanics in a Nutshell (1)

Quantum mechanics is a mathematical framework for describing the laws
of quantum physics.

This framework is formulated using the language of dynamical systems.
To specify this dynamical system we need to specify

= jts state space,

= and its transition rule.



Quantum Mechanics in a Nutshell (1)

Quantum mechanics is a mathematical framework for describing the laws
of quantum physics.

This framework is formulated using the language of dynamical systems.
To specify this dynamical system we need to specify

= jts state space,

= and its transition rule.

Keep in mind that any physical system is associated with a
Hilbert space H, over the field of complex numbers.

In our cases, you can think of these Hilbert spaces as C¢.




Quantum Mechanics in a Nutshell (2)

How can we formulate a composite system, consisting of two subsystems
A and B, corresponding to Hilbert spaces H 4 and Hg?

The Hilbert space associated to the composite system will be

Hag = Ha® Hp.

Remember that:

auB al,,B
A®B =

amlB s am,,B



Quantum Mechanics in a Nutshell (3)

For a physical system associated with a Hilbert space #, a state of the
system is a matrix p : H — H, such that:

1 tr(p) =1
2. pis positive semidefinite (PSD), denoted as p > 0.

[ These matrices are called density matrices (operators). ]




Quantum Mechanics in a Nutshell (4)

Dynamics of our system should be defined by superoperators
& L(H1) = L(Ha).

A superoperator ¢ : L(Ha) — L(Hp) is called positive, if for any
p € L(Ha) with p >0, &(p) > 0.




Quantum Mechanics in a Nutshell (4)

Dynamics of our system should be defined by superoperators

& L(H1) = L(H2).

A superoperator ¢ : L(Ha) — L(Hp) is called positive, if for any
p € L(Ha) with p >0, &(p) > 0.

Definition
A superoperator ¢ : L(Ha) — L(Hp) is called completely positive, if
for any Hilbert space H ¢ and for all p € L(Ha ® Hc) with p > 0,

(P®Zc)(p) = 0.



Completely Positive Maps

Is it hard to check whether a map is completely positive?



Completely Positive Maps

Is it hard to check whether a map is completely positive?
No!
Using the Choi matrix:

®(j0){0)  @(lo)(1]) ...  ®(|0){d—1])
Co = ¢(|1.><0|) q>(|1_><1|)
Old—1)(0) ... ... &(d—1)d—1]

® is completely positive iff Cy is PSD.



Quantum Entanglement (Pure States)

A simple observation:
For two Hilbert spaces H; and H,, there exists a vector v € Hy ® Ho,

such that
VF#E VI ® v,
for all vy € Hy and v» € Ho.
For example
1
V2
CPeC*> 0 # (X> ® <Z>
0 y t
1

V2

Such vectors are called entangled,
and anything that is not entangled is called separable.



Quantum Entanglement (Density Matrices)

A state pag € L(Ha ® Hp) of a composite system is called separable
if it can be written as

PAB = ZP:'U,'@T/',
i

where o; € L(Ha) and 7; € L(Hp) are density matrices for all /'s, and
pi's are positive real numbers with the condition that ). p; = 1.
A state that is not separable, is called entangled.



Quantum Entanglement (Density Matrices)

A state pag € L(Ha ® Hp) of a composite system is called separable
if it can be written as

PAB = ZP:'U,'@T/',
i

where o; € L(Ha) and 7; € L(Hp) are density matrices for all /'s, and
pi's are positive real numbers with the condition that ). p; = 1.
A state that is not separable, is called entangled.

For example, the following state in £(C? ® C?) is entangled.

100 1
1|00 00
P=%10 0 0 0

100 1



The set of all density matrices over Ha ® Hp is denoted by
D(n, m),
and the set of all separable states by
SEP(n, m),

where n and m are the dimensions of H4 and Hp, respectively.




Recognition of Separable States

It is NP-hard to determine whether an arbitrary quantum state within
an inverse polynomial distance from SEP is entangled.



Optimizations over SEP

There are scenarios that we need to do an optimization over SEP.
For example, to measure the amount of entanglement of a state, we want
to compute the following quantity:

Er(pas) :== UAaneigEP S(paslloas),

where S(pasl|loag), which is called the relative entropy of the states pag
and oap is defined as S(paglloas) := tr(paglog pas) — tr(paglog oas).

What can we do?
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Entanglement Detection




Entanglement Criteria (1)

A simple geometric observation:

= Equip D with the inner product (A, B) := tr(AB").
= SEP is a closed convex set.

Thus, for any p & SEP, we can separate p from SEP using a hyperplane.
In other words, there exists a Hermitian operator W € L(Ha ® Hpg) such
that tr(Wp) < 0 and tr(Wo) > 0 for all separable states o.

W is called an entanglement witness.

Entangled
tr(Wt) <0

Entangled
tr(W7) >0
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Entanglement Criteria (2)

A simple algebraic observation:
Let & : L(Hp) — L(Ha) be a positive but not completely positive map.

= For any separable state p =) . pio; ® 7,
(Za®@®)p=7_ poi® d(r) > 0.
= Define the set of all states that are positive under partial application
of ® by
PP® := {pag €D : (IA X CD),OAB > 0}.

The above set is a proper subset of D.
= And, SEP is contained in PP®.

Therefore, any positive but not completely positive map provides an
entanglement criterion.
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Properties of the Two Families of
Criteria




Some Important Questions

= Do we know examples of positive but not completely positive maps?
= |s it possible to describe SEP with PP®s?

= Can we compare two criteria?

= Are PP®s nested or incomparable?

= Are entanglement witnesses and positive but not completely positive
maps related?

= Can we characterize PP®s by entanglement witnesses?
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Examples of Positive but not Completely Positive Maps

= The most important example is the transpose map, whose
corresponding PP® is known as PPT.

= The reduction map:
N(p) == tr(p)lz — p
= Breuer-Hall maps:
Tau(p) = tr(p)ls — p— Up U,

for any U:H — H with UT = —U and U'U< L.
= The Choi map:

X11  X12  X13 X11 + X33 —X12 —X13
Xp1  X22  X23 — —X21 X22 + X11 —X23
X31  X32 X33 —X31 —X32 X33 + X22
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Describing SEP with PP®s

A state pag is separable iff for all positive maps & : L(Hg) — L(Ha),
paB € PPO.



Describing SEP with PP®s

A state pag is separable iff for all positive maps & : L(Hg) — L(Ha),
paB € PPO.

Theorem

A state pag acting on C?> ® C? or C*> ® C3 is separable iff its partial
transposition is PSD, but in higher dimensions, (Z ® 0)pag > 0 is not a
sufficient condition for separability.



Are PP®s nested?

In high dimensions, No!

ppPhi under transpose map
+  ppPhi under Terhal map

0.0 0.2 0.4 06 0.8 10

Figure 1: The set of states p = (1 — p— q)o1 + po2 + gos and its intersection
with PP® and PPT.
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Relationships between Witnesses and Maps

= Via Choi—Jamiotkowski isomorphism:

da
C(®) =D 1 (1@ ®*(Ii (),

ij=1
For a state p, if tr(C(®)p) < 0, then, p & PP®.
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Relationships between Witnesses and Maps

= Via Choi—Jamiotkowski isomorphism:

ZI Ul ®*(li) Ul),

ij=1
For a state p, if tr(C(®)p) < 0, then, p & PP®.
= Via semidefinite programming;:
Consider
max t
t
st. (Za® P)pag > tlag.

The dual gives us a witness:
mvi/n (W(Za ® ®)pas)
st. (W) =1,
W>0.

(Za ® ®*)W* is an entanglement witness.
17



Characterizing PP® by Entanglement Witnesses

For any positive but not completely positive map & : L(Hg) — L(Ha),
the family of witnesses of the form

Wiy) = (T ®@ %) |9) (41,

where |1) is an entangled vector in Ha ® Ha, are enough to describe
PP®, meaning that pag ¢ PP® if and only if there exists a member of
this family witnessing pag.

Theorem

Let W e L£(C? ® C?) be a SDP witness obtained from the transpose
map with an initial state p € L(C? ® C?). Then W is of the form

W= (ZT®0)[y) ¥l

where 6 is the transpose map and |1)) is an entangled vector in C? @ C2.



Characterizing SDP Witnesses

Theorem

Let W be the SDP witness obtained from the transpose map

0 : L(C?) — L(C?) with the initial state 1 |Q) (Q|, where

|Q2) = ]00) + |11). Consider the action of the group of the local
unitaries {U; @ U, | Uy, Us : C2 — C? are unitaries} on the set of the
Hermitian operators over C*, which is defined as

X (Up @ Un)X(Uy @ Up)T. The set of the SDP witnesses obtained
from the transpose map with pure states as their initial states is equal
to the orbit of W under this group action.




Conclusion




Conclusion

= Recognition of SEP is hard, but we can develop easy necessary
conditions.

= Positive but not completely positive maps and entanglement
witnesses are two important family of entanglement criteria.

= These two families of criteria are related to each other.

= Semidefinite programming can be used to obtain an optimal family

of witnesses.
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Thank youl!
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