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“The more constraints one imposes, the more one frees one’s self of the chains that shackle the
spirit.”

Igor Stravinsky

“All the business of war, and indeed all the business of life, is to endeavour to find out what you
don’t know by what you do; that’s what I called guessing what was at the other side of the hill.”

Duke of Wellington
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INSTITUT POLYTECHNIQUE DE PARIS

Abstract
Quantum Guessing Games

by Ali Almasi

In the present work, we study quantum guessing games, a generalization of two well-studied prob-
lems in quantum information theory, namely quantum state discrimination and quantum state an-
tidiscrimination. We begin by extending some of the known results about those two special cases
to the more general setting of quantum guessing games. In the second part of the thesis, we use
semidefinite programming and the theory of Minorization-Maximization (MM) algorithms to intro-
duce iterative algorithms for quantum guessing games and investigate their convergence.
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Chapter 1

Introduction

Background and Motivation In quantum information theory, information is encoded in the
states of quantum systems, and processing this information involves manipulating the state via
quantum operations. Once processing is complete, extracting the encoded information requires de-
termining the system’s state by performing quantum measurements. However, due to the principles
of quantum mechanics, it is not often possible to find a quantum measurement that can perfectly
distinguish all possible states of the system after processing. This challenge brings the concept of
quantum state discrimination (QSD) to the forefront. Quantum state discrimination is the task of find-
ing the optimal measurement to distinguish between a set of quantum states according to a specified
figure of merit.

The study of quantum state discrimination began in the late 1960s, with Helstrom’s pioneering
works [Hel67; Hel69]. Since then, it has attracted considerable attention and found several appli-
cations in quantum information theory [BK02; Hay06; Spe14], quantum query complexity [Mon07],
quantum cryptography [DJL00; Ber07], and quantum computing [BCD05].

Researchers have considered various figures of merit in these studies, leading to the development
of different strategies for quantum state discrimination, including minimum-error discrimination
[Hel69], unambiguous discrimination [Iva87], maximum confidence discrimination [Cro+06], quan-
tum hypothesis testing [Hay06], and quantum guesswork discrimination [Che+15]. Among these,
minimum-error discrimination is the most well-known, which aims to minimize the probability of
error when distinguishing between states. In this thesis, unless otherwise stated, "quantum state
discrimination" will refer to minimum-error discrimination.

Finding the optimal success probability and measurement for quantum state discrimination is
the central focus of the literature on this topic. To this end, two main approaches have been explored.
The first approach seeks closed-form solutions, which are only known for a few special cases, such as
the discrimination of two states [Hel67; Hol72], equiprobable qubits [DT10], geometrically uniform
states [EMV04], and mirror-symmetric states [And+02]. The second approach involves developing
numerical schemes to find solutions with arbitrary precision.

These numerical schemes fall into two categories. The first category is based on semidefinite
programming (SDP) [JŘF02; Eld03; WGM08; SC23], a powerful tool for solving many quantum infor-
mation problems. The availability of efficient SDP solvers [Ali91; NN92; NN94] has made it possible
to numerically solve the quantum state discrimination problem for reasonable size systems. The sec-
ond category comprises iterative algorithms specifically designed for quantum state discrimination
[JŘF02; Tys09a; NKU15]. These iterative algorithms are often derived from the problem’s optimality
conditions and can sometimes outperform SDP solvers in terms of efficiency.

While the problem of quantum state discrimination primarily focuses on finding the optimal
success probability and the corresponding measurement, in many real-world applications, obtaining
a good bound on the success probability or a near-optimal measurement is often sufficient. Several
studies have focused on finding upper and lower bounds on the optimal success probability [NS06;
HKK06; HB10; QL10; NUK18; Lou22]. Some of these bounds are derived from explicit measure-
ments that are not necessarily optimal but perform pretty well on this task [BK02; Mon07; Tys09b].
Notable examples include the pretty good measurement (also known as the square-root measure-
ment) [Hau+96; PW91] and the Holevo measurement (also known as the quadratically-weighted
measurement) [Hol79]. Both of these are special cases within a broader class of measurements known
as Belavkin measurements, which also includes the optimal measurement [BM04].

A closely related problem to quantum state discrimination is quantum state antidiscrimination,
also known as quantum state elimination or exclusion, which has recently attracted the attention
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of researchers [CFS02]. In the quantum state antidiscrimination problem, the goal is to determine
which state the quantum system is not in, excluding one state from the set of possible candidates.
This problem has found applications in quantum cryptography [DWA14], quantum communication
complexity [HB20], and the foundations of quantum mechanics [PBR12; Lei14]. Similar to the work
done on quantum state discrimination, research on state antidiscrimination has explored various
aspects, such as establishing conditions for perfect antidiscrimination [HK18; JRS23], formulating
the problem as a semidefinite program (SDP) [Ban+14], developing a pretty good measurement for
antidiscrimination [MMS24], and studying error exponents in the asymptotic regime [MNW24].

Although quantum state antidiscrimination can be framed as a state discrimination problem
[Ban+14; MMS24], and the two share several similarities, antidiscrimination has distinct character-
istics that set it apart. For instance, the conditions for perfect antidiscrimination are different and
more complicated than those for perfect discrimination. The study of antidiscrimination is still in its
early stages, and many questions remain unanswered, potentially revealing fundamental differences
or deeper connections between the two problems.

Research Problem and Contributions In this thesis, we explore a generalized formulation of
the quantum state discrimination and antidiscrimination problems, known as quantum guessing
games. In quantum guessing games, two parties, Alice and Bob, engage in the following scenario:
Alice selects a quantum state from an ensemble she possesses and sends it to Bob. Bob’s task is to
guess which state Alice has chosen, using a quantum measurement on the received state. Each pos-
sible state Alice selects and each guess Bob makes has an associated reward. Bob’s objective is to
devise a guessing strategy—a measurement—that maximizes his expected reward. This formulation
has appeared in several works related to quantum state discrimination (see e.g. [Hel69]), but the
study of this problem in such a general context has only recently begun [CHT22; MSU23].

The first contribution of this thesis is establishing a standard form for quantum guessing games,
to which any quantum guessing game can be reduced. In Chapter 2, we introduce this standard form
and demonstrate that every quantum guessing game can be transformed into a quantum state dis-
crimination problem, highlighting the significance of studying quantum state discrimination. While
this reduction is possible, it does not preserve all properties of the original quantum guessing games,
meaning the reduction does not trivialize the study of quantum guessing games. For instance, an
ensemble that can be perfectly antidiscriminated may not be reduced to one that can be perfectly
discriminated.

The second contribution of this work is the generalization of the pretty good measurement, pre-
viously studied in the context of quantum state discrimination, to quantum guessing games. This
is done in Chapter 3. In the specific case of quantum state antidiscrimination, this generalization
was recently explored by McIrvin et al. in [MMS24] under the term "pretty bad measurements." Our
definition of pretty good measurements extends both the definitions of pretty good measurements
for discrimination and pretty bad measurements for antidiscrimination. Additionally, we derive a
lower bound on the success probability of the pretty good measurement and an upper bound on the
optimal success probability in terms of the pretty good measurement in the general case of quantum
guessing games, extending the bounds obtained in [MMS24; BK02].

Our third contribution is studying a class of iterative algorithms for finding the optimal measure-
ment in quantum guessing games. We begin by formulating quantum guessing games as semidefi-
nite programs and deriving their optimality conditions in Chapter 4. Building on these conditions,
in Section 5.1, we generalize the algorithm proposed by Ježek, Řeháček, and Fiurášek [JŘF02] to the
context of quantum guessing games and provide numerical evidence supporting the convergence of
the algorithm.

Since the convergence of the original algorithm has not been proven for general quantum ensem-
bles yet, we focus on studying its convergence in the case of quantum state discrimination. Using
previously established results in [Tys10], we connect the algorithm to a well-known class of iterative
optimization methods called minorization-maximization (MM) algorithms in Section 5.3. We then
analyze the fixed points of both the algorithm and its MM counterpart in Section 5.4, proposing a
potential direction for proving convergence. To the best of our knowledge, this direction has not
been explored in the literature.

Outline
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• In Chapter 2, we introduce quantum guessing games and establish a standard form for them.
Using this standard form, we show that any quantum guessing game can be reduced to a quan-
tum state discrimination problem. Following this, we review key foundational results for both
quantum state discrimination and antidiscrimination. The chapter concludes by discussing
how quantum guessing games naturally arise in other quantum information problems.

• In Chapter 3, we investigate the pretty good measurement in the context of quantum guessing
games. We derive a lower bound on the success probability of the pretty good measurement
and an upper bound on the optimal success probability in terms of the pretty good measure-
ment, extending previously known bounds for quantum state discrimination. We then set the
stage for our upcoming discussion on iterative algorithms, by reviewing the Belavkin mea-
surements, a more general class of measurements that includes the pretty good measurement.

• In Chapter 4, we analyze quantum guessing games by formulating them as semidefinite pro-
grams and derive the optimality conditions for these problems.

• In Chapter 5, we study an iterative algorithm for determining the optimal measurement in
quantum guessing games. We begin by generalizing the algorithm proposed by Ježek, Řeháček,
and Fiurášek [JŘF02] to quantum guessing games and analyze its convergence numerically. We
then examine the convergence of this algorithm specifically for quantum state discrimination,
reviewing two modified versions proposed in [Tys10; NKU15]. Our focus then shifts to the
one proposed in [Tys10], discussing its interpretation as a minorization-maximization (MM)
algorithm. The chapter ends with an analysis of the algorithms’ fixed points and a suggestion
for a potential approach towards proving their convergence.

• In Chapter 6, we conclude the thesis and discuss some possible directions for future research.

• We also include some basic definitions and results from linear algebra and convex analysis
that are needed throughout the thesis in Appendix A.
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Chapter 2

Quantum Guessing Games

In this chapter, we introduce the concept of quantum guessing games, a generalization of the quan-
tum state discrimination problem. We also survey some of the most important results known about
two special instances of quantum guessing games: the quantum state discrimination problem and
the quantum state antidiscrimination problem. Although the notion of quantum guessing games has
attracted the attention of researchers quite recently [CHT22; MSU23], one can trace back the roots
of this general formulation to the seminal work of Helstrom [Hel69] and since then, it has also ap-
peared in several other works [Che+15; Wat18], not necessarily under the name of quantum guessing
games.

2.1 Problem Formulation

In the quantum state discrimination problem, Alice prepares a quantum state from a known en-
semble and sends it to Bob, who performs a quantum measurement to determine the state. The
goal is to maximize the probability of Bob correctly identifying the state. In the quantum guessing
games, we generalize this problem by assigning rewards to the outcomes of Bob’s measurement. The
formulation we present here is similar to the one of [MSU23].

Suppose that Alice possesses an ensemble E = {ρ̃k}k∈[N ], and she picks a state ρj from this ensem-
ble and sends it to Bob, who performs a POVM measurement M = {Ms}s∈[L] on the receiving state,
obtaining a measurement output i ∈ [M]. For each i ∈ [L] and j ∈ [N ], if the receiving state is ρj and
Bob’s measurement output is i, he obtains a reward Ri,j ∈ R (see Figure 2.1). Bob wants to maximize
his expected reward obtained by performing a POVM M, which is denoted byRM (G) (or simplyRM
when the game is clear from the context), subject to all POVM measurements with L outputs he can
perform, meaning that he wants to maximize

RM
def==

L∑
i=1

N∑
j=1

Ri,j tr(Mi ρ̃j ), (2.1)

over all POVMs M = {Mk}k∈[L].

Figure 2.1: A schematic representation of a quantum guessing game. For
guessing the unknown state ρ?, Bob can use classical probabilistic strategies,
as well as quantum strategies (i.e. performing a quantum measurement on
the received state). It is easy to see that the classical probabilistic strategies

are a special case of quantum strategies.

Ensemble E = {ρ̃k}k∈[N ]
Reward Matrix RL×N

Alice Bob

ρ? = ρj

ρ?
guess
== ρi

Reward Ri,j
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Definition 2.1.1 (Quantum Guessing Game). A quantum guessing game is a pair G = (E ,R), where
E = {ρ̃k}k∈[N ] is a quantum ensemble and R ∈ RL×N is a matrix, with which the following maximiza-
tion problem is associated:

maximize : RM =
L∑
i=1

N∑
j=1

Ri,j tr(Mi ρ̃j ),

subject to :
N∑
k=1

Mk = 1,

Mk ≥ 0 k ∈ {1,2, . . . ,L}.

(2.2)

The optimal value of this optimization problem is called the optimal reward, denoted by Ropt(G)
(or Ropt when the game is clear from the context), and the optimal solution is called the optimal
measurement.

Remark 2.1.2. Problem (2.2) is a linear optimization problem over the convex set of POVMs. Thus,
every optimal solution for this problem is an extreme point of the feasible set. Notably, characteri-
zation theorems for the extremality of POVMs are known [see, e.g., HP20], which can, in principle,
be used to find the optimal POVMs for quantum guessing games.

2.2 Normal Forms

The rewards can be arbitrary real numbers in the general form of quantum guessing games in-
troduced in Definition 2.1.1. However, it is easier to analyze the problem when the rewards are
restricted to the interval [0,1]. In this section, we show that any quantum guessing game can be
reduced into a standard form, where the rewards are in [0,1].

Proposition 2.2.1. Let G = (E ,RL×N ) be a quantum guessing game.

1. There exists a quantum guessing game G′ = (E ,R′L×N ), such that for all (i, j) ∈ [L] × [N ], R′i,j ≥ 0,
and the optimal measurements of G and G′ coincide.

2. There exists a quantum guessing game G′′ = (E ,R′′L×N ), such that for all (i, j) ∈ [L]× [N ], R′′i,j ∈ [0,1],
and the optimal measurements of G and G′′ coincide.

Proof. 1. Without loss of generality, suppose that there exists (s, t) ∈ [L] × [N ] such that Rs,t < 0,
and for all (i, j) , (s, t), Ri,j ≥ 0. Let G′ = (E ,R′L×N ) be a quantum guessing game, where R′ is
defined as follows:

R′i,j =
{
Ri,j j , t
Ri,j −Rs,t j = t (2.3)

Note that for all (i, j), R′i,j ≥ 0. Moreover, for any POVM M = {Mk}k∈[L] we have:

R′M =
L∑
i=1

N∑
j=1

R′i,j tr(Mi ρ̃j ) (2.4)

=
L∑
i=1

(
(Ri,t −Rs,t) tr(Mi ρ̃t) +

∑
j,t

Ri,j tr(Mi ρ̃j )
)

(2.5)

=
L∑
i=1

(
−Rs,t tr(Mi ρ̃t) +

N∑
j=1

Ri,j tr(Mi ρ̃j )
)

(2.6)

=
L∑
i=1

−Rs,t tr(Mi ρ̃t) +
L∑
i=1

N∑
j=1

Ri,j tr(Mi ρ̃j ) (2.7)

= −Rs,t tr(
L∑
i=1

Mi ρ̃t) +RM (2.8)
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= −Rs,t tr(1ρ̃t) +RM (2.9)

= −Rs,tqt +RM (2.10)

Note that −Rs,tqt is a constant that does not depend on M, which implies that the optimal
measurements of G and G′ are equal.

2. Having an equivalent quantum guessing game G′ = (E ,R′L×N ) from the previous part, consider

the quantum guessing game G′′ = (E ,R′′L×N ), where R′′i,j
def==

R′i,j
maxi,j R′i,j

. The expected reward of

G′′ when Bob performs a measurement M is

R′′M =
L∑
i=1

N∑
j=1

R′′i,j tr(Mi ρ̃j ) (2.11)

= (max
i,j

R′i,j )
−1

L∑
i=1

N∑
j=1

R′i,j tr(Mi ρ̃j ) (2.12)

= (max
i,j

R′i,j )
−1R′M . (2.13)

As (maxi,j R′i,j )
−1 is a constant, the optimal measurements ofG′ andG′′ remain the same. More-

over, we have R′′i,j ∈ [0,1] for all (i, j) by our construction.

Definition 2.2.2. A quantum guessing gameG = (E ,RL×N ) is called standard, if for all (i, j) ∈ [L]×[N ],
Ri,j ∈ [0,1].

In the rest of this thesis, all quantum guessing games are assumed to be standard unless other-
wise stated.

Example 2.2.3 (State Discrimination and Antidiscrimination Problems). A well-studied special case
of quantum guessing games is the minimum-error state discrimination problem, which can be for-
mulated as a quantum guessing game with a reward matrix RN×N of the following form:

Ri,j =
{

1 i = j
0 i , j

(2.14)

In the case of the minimum-error state discrimination problem, we usually refer to the (optimal)
reward as the (optimal) success probability, and denote it by (Popt(E)) PM (E).
Another example of quantum guessing games is the state antidiscrimination problem, that has a
reward matrix RN×N of the following form:

Ri,j =
{

0 i = j
1 i , j.

(2.15)

2.2.1 Reduction to the Quantum State Discrimination Problem

As we have seen, quantum state discrimination is a special case of quantum guessing games. How-
ever, as noted by [CHT22; MMS24], quantum guessing games can be reduced to QSD problems over
new ensembles constructed from the original ensembles and the reward matrices.

Let G = (E ,RL×N ) be a quantum guessing game. Recall that the optimal reward of G is given by

Ropt = max
M

L∑
i=1

N∑
j=1

Ri,j tr(Mi ρ̃j ), (2.16)

where the maximization is taken over all POVMs M = {Mi}i∈[L]. Define

∆G =
L∑
i=1

N∑
j=1

Ri,j tr(ρ̃j ), (2.17)
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and consider the ensemble EG = {τ̃i}i∈[L], defined as

τ̃i
def==

1
∆G

N∑
j=1

Ri,j ρ̃j . (2.18)

Then, for any POVM M = {Mi}i∈[L], the success probability of M in a QSD problem over EG is given
by

PM (EG) =
L∑
i=1

tr(Mi τ̃i) =
1
∆G

L∑
i=1

N∑
j=1

Ri,j tr(Mi ρ̃j ) =
RM (G)
∆G

. (2.19)

The above equality also shows that the optimal measurements for the QSD problem over EG are the
same as the optimal measurements for the quantum guessing game G, implying that

Popt(EG) =
Ropt(G)

∆G
. (2.20)

2.3 Quantum State Discrimination and Antidiscrimination

In Example 2.2.3, we saw that the quantum state discrimination and antidiscrimination problems,
two well-studied problems in quantum information theory with several applications in quantum
foundation [PBR12], quantum communication [Che04; HB20] and quantum cryptography [Ben92;
Ber07], are special cases of quantum guessing games. Moreover, in Subsection 2.2.1, we discussed
how any quantum guessing game can be reduced to a QSD problem. This section briefly overviews
these two problems and presents some essential related results.

2.3.1 Quantum State Discrimination

In the quantum state discrimination problem, Alice chooses a state from a known ensemble E =
{ρ̃k}k∈[N ] and sends it to Bob, who performs a POVM M = {Mi}i∈[N ] to determine which state Alice
has sent. Ideally, Bob wants to find a POVM M = {Mi}i∈[N ] such that

tr(Miρj ) = δi,j , ∀i, j ∈ [N ], (2.21)

where δi,j is the Kronecker delta function. However, this is not always possible due to the nature of
quantum mechanics. The following proposition governs the possibility of perfect discrimination of
quantum states.

Proposition 2.3.1. Let E = {ρ̃k}k∈[N ] be a quantum ensemble. The states in E can be perfectly discriminated
if and only if they are mutually orthogonal, i.e., ρiρj = 0 for all i , j.

Proof. Since the states in E are mutually orthogonal, for all i , j, we have ρiρj = ρiρj = 0, which
implies that

Im(ρi) ⊆ ker(ρj ) and Im(ρj ) ⊆ ker(ρi). (2.22)

Let Im(E) = ∪Ni=1 Im(ρi), and M0 = 1 −ΠIm(E) be the projector onto the orthogonal complement of
Im(E). Let us define the POVM M = {Mi}i∈[N ] as

Mi
def== ΠIm(ρi ) +

1
N
M0. (2.23)

Then, for all i, j ∈ [N ], we have

tr(Miρj ) = tr(ΠIm(ρi )ρj ) +
1
N

tr(M0ρj ) = δi,j + 0 = δi,j . (2.24)

For the converse, let us first prove the statement for a pure state ensemble and then extend it to the
general case. Suppose that E = {|̃ψk⟩}k∈[N ] is a pure state ensemble. The states in E can be perfectly
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discriminated if and only if they satisfy (2.21). Thus, for any two states |ψi⟩ and |ψj⟩, we have

⟨ψi |Mi |ψi⟩ = ⟨ψj |Mj |ψj⟩ = 1, ⟨ψi |Mj |ψi⟩ = ⟨ψj |Mi |ψj⟩ = 0. (2.25)

Assume that |ψi⟩ and |ψj⟩ are not orthogonal, i.e., |ψi⟩ = α|ψj⟩+ β|ψ⊥j ⟩ for some α,β , 0, where |ψ⊥j ⟩
is a state orthogonal to |ψj⟩.

Since Mi ≥ 0, one can define
√
Mi =

∑N
k=1
√
λk |φk⟩⟨φk |, where Mi =

∑N
k=1λk |φk⟩⟨φk | is the spectral

decomposition of Mi . Then, from ⟨ψj |Mi |ψj⟩ = ⟨ψj |
√
Mi
√
Mi |ψj⟩ = 0, we imply that

√
Mi |ψj⟩ = 0.

This implies that
√
Mi |ψi⟩ =

√
Mi(α|ψj⟩+ β|ψ⊥j ⟩) = β

√
Mi |ψ⊥j ⟩. Thus, ⟨ψi |Mi |ψi⟩ = |β|2 < 1, which is a

contradiction.
For the case of a mixed state ensemble E = {ρ̃k}k∈[N ], from the spectral decomposition theorem,

for all k ∈ [N ], we can write ρ̃k =
∑d
i=1pk,i |ψk,i⟩⟨ψk,i |, where pk,i ≥ 0,

∑d
i=1pk,i = 1, and {|ψk,i⟩}i∈[d]

is an orthonormal set. Now, the conditions tr(Mi ρ̃j ) = δi,j for all i, j ∈ [N ] are equivalent to having
⟨ψj,k |Mi |ψj,k⟩ = δi,j for all i, j ∈ [N ] and k ∈ [d]. Therefore, using the result for pure state ensembles,
we conclude that {|ψj,k⟩}k∈[d],j∈[N ] must be mutually orthogonal, which implies that {ρk}k∈[N ] must be
mutually orthogonal.

Corollary 2.3.2. In a QSD problem over an ensemble E = {ρ̃k}k∈[N ], if E contains a full-rank state, then it
cannot be perfectly discriminated.

When an ensemble can not be perfectly discriminated, different figures of merit can be used to
quantify the performance of Bob’s discrimination strategy. In this thesis, we focus on the minimum-
error state discrimination, in which the goal is to minimize the probability of Bob making an error
in identifying the state. The optimal success probability of Bob is then formalized as

Popt(E) = max
M

N∑
k=1

tr(Mk ρ̃k), (2.26)

where the maximization is taken over all POVMs M = {Mk}k∈[N ].
Corollary 2.3.2 shows that having full-rank states in the ensemble prevents perfect discrimina-

tion. However, in many situations, it is helpful to consider ensembles with only full-rank states. The
following proposition shows that for any ensemble, we can always find a full-rank ensemble with
an optimal success probability arbitrarily close to the optimal success probability of the original
ensemble.

Proposition 2.3.3. Let E = {ρ̃k}k∈[N ] be a quantum ensemble. For any ϵ > 0, there exists a full-rank
ensemble E ′ = {σ̃k}k∈[N ] such that

|Popt(E)−Popt(E ′)| ≤ ϵ. (2.27)

Proof. First, we prove that the set of full-rank states is dense in the set of all states. Let ρ be a state
with a spectral decomposition ρ =

∑r
i=1pi |ψi⟩⟨ψi |, where pi > 0, and let {|φj⟩}d−rj=1 be an orthonor-

mal basis for the subspace Im(ρ)⊥. For any ϵ > 0, consider the operator σ =
∑r
i=1(pi − ϵ

r )|ψi⟩⟨ψi | +∑d−r
j=1

ϵ
d−r |φj⟩⟨φj |. It is clear that σ is a full-rank quantum state, and ∥ρ − σ∥∞ < ϵ.

Now, let E = {ρ̃k}k∈[N ] be a quantum ensemble, and let ϵ > 0. For each k ∈ [N ], let σk be a full-rank
state such that ∥ρk−σk∥1 < ϵ

N . We have proven the existence of such states in the case that the distance
on matrices is induced by the operator norm, and since all norms are equivalent in finite dimensions,
this result extends to the trace norm. Define the ensemble E ′ = {σ̃k}k∈[N ], where σ̃k = tr(ρ̃k)σk . Then,
for any POVM M = {Mi}i∈[N ], we have

|PM (E)−PM (E ′)| =
∣∣∣∣ N∑
k=1

tr(Mk ρ̃k)−
N∑
k=1

tr(Mk σ̃k)
∣∣∣∣ =

∣∣∣∣ N∑
k=1

tr(Mk(ρ̃k − σ̃k))
∣∣∣∣ (2.28)

≤
N∑
k=1

| tr(Mk(ρ̃k − σ̃k))| (2.29)

≤
N∑
k=1

∥Mk∥∞∥ρ̃k − σ̃k∥1 (2.30)
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< ϵ, (2.31)

where (2.30) follows from the Holder’s inequality. Having |PM (E)−PM (E ′)| < ϵ for all POVMs M, we
conclude that |Popt(E)−Popt(E ′)| ≤ ϵ.

Finding closed-form expressions for the optimal success probability of a QSD problem does
not seem to be easy, and except for some special cases [Hel67; Hol72; And+02; EMV04; DT10], a
closed-form solution is not known. One of these exceptional cases is the binary state discrimina-
tion problem, where the ensemble consists of only two states. The following proposition provides a
closed-form solution for both the optimal success probability and the optimal POVM in that case.

Proposition 2.3.4 (Holevo-Helstrom Theorem [Hel67; Hol72]). Let E = {ρ̃1, ρ̃2} be a binary ensemble.
The optimal success probability of the QSD problem over E is given by

Popt =
1
2

+
1
2
∥ρ̃1 − ρ̃2∥1, (2.32)

and the optimal POVM is given byM = {M1,M2}, whereM1 andM2 are the projectors onto the eigenspaces
of ρ̃1 − ρ̃2 corresponding to the positive and negative eigenvalues.

Proof. We have

PM = tr(M1ρ̃1) + tr(M2ρ̃2) (2.33)

=
1
2

tr(M1ρ̃1) +
1
2

tr(M1ρ̃1) +
1
2

tr(M2ρ̃2) +
1
2

tr(M2ρ̃2) (2.34)

=
1
2

tr(M1ρ̃1) +
1
2

tr((1−M2)ρ̃1) +
1
2

tr(M2ρ̃2) +
1
2

tr((1−M1)ρ̃2) (2.35)

=
1
2

tr(ρ̃1) +
1
2

tr(ρ̃2)− 1
2

tr(M2ρ̃1)− 1
2

tr(M1ρ̃2) +
1
2

tr(M1ρ̃1) +
1
2

tr(M2ρ̃2) (2.36)

=
1
2

+
1
2

tr(M2(ρ̃1 − ρ̃2))− 1
2

tr(M1(ρ̃1 − ρ̃2)) (2.37)

=
1
2

+
1
2

tr((M2 −M1)(ρ̃1 − ρ̃2)) (2.38)

≤ 1
2

+
1
2
∥M2 −M1∥∞∥ρ̃1 − ρ̃2∥1 (2.39)

≤ 1
2

+
1
2
∥ρ̃1 − ρ̃2∥1, (2.40)

where the first inequality follows from the Holder’s inequality, and the second inequality follows
from the fact that the operator norm of M2 −M1 is equal to its largest singular value, which is at
most 1.

To see that the equality can be achieved, consider the spectral decomposition of ρ̃1 − ρ̃2 as

ρ̃1 − ρ̃2 =
r∑
i=1

λi |ψi⟩⟨ψi |+
d−r∑
j=1

µj |φj⟩⟨φj |, (2.41)

where λi ≥ 0 for i ∈ [r] and µj < 0 for j ∈ [d − r]. Define POVM M = {M1,M2} as M1 =
∑r
i=1 |ψi⟩⟨ψi |

and M2 =
∑d−r
j=1 |φj⟩⟨φj |. Then, we have

tr((M2 −M1)(ρ̃1 − ρ̃2)) =
r∑
i=1

λi +
d−r∑
j=1

|µj | (2.42)

= ∥ρ̃1 − ρ̃2∥1, (2.43)

which completes the proof.

Remark 2.3.5. As a consequence of the above proposition, the optimal success probability of dis-
criminating between two states, ρ1 and ρ2, with equal prior probabilities is 1

2 + 1
4∥ρ1 − ρ2∥1. This
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provides an operational interpretation of the trace distance between two quantum states, relating it
to the optimal success probability of discriminating them.

Remark 2.3.6. Putting together Proposition 2.3.4 and our discussion in Subsection 2.2.1, we see that
for any quantum guessing game G = (E ,R2×N ), the optimal reward of G is given by

Ropt =
∆G

2
+

1
2
∥(

N∑
j=1

R1,j ρ̃j −
N∑
j=1

R2,j ρ̃j )∥1, (2.44)

and the optimal POVM is given by M = {M1,M2}, where M1 and M2 are the projectors onto the
eigenspaces of

∑N
j=1R1,j ρ̃j −

∑N
j=1R2,j ρ̃j corresponding to the positive and negative eigenvalues.

2.3.2 Quantum State Antidiscrimination

The quantum state antidiscrimination problem, or the quantum state exclusion [Ban+14], is a prob-
lem closely related to the quantum state discrimination problem but with a less ambitious goal. In
the quantum state antidiscrimination, Bob’s task is to identify which state has not been sent by Alice.
More formally, Bob wants to find a POVM M = {Mi}i∈[N ] such that

tr(Miρi) = 0, ∀i ∈ [N ]. (2.45)

If there exists a POVM M satisfying the above condition, then the states in the ensemble are said to
be antidistinguishable, or they can be perfectly antidiscriminated. If the states in the ensemble can not
be perfectly antidiscrimination, then Bob’s goal is to minimize the probability of making an error,
i.e., to find a POVM M that minimizes

∑N
i=1 tr(Mi ρ̃i).

The quantum state antidiscrimination problem was first introduced in [CFS02]. The first signif-
icant application of this problem appeared in [PBR12], where the authors used the problem to show
that within the framework of quantum theory, quantum states must be considered ontic, i.e., a state
of reality, rather than epistemic, i.e., a state of knowledge [Lei14]. Other applications of the quantum
state antidiscrimination have been studied in [Bar+14; DWA14; HB20; LD20].

Proposition 2.3.7. If a quantum ensemble E = {ρ̃i}i∈[N ] can be perfectly discriminated, then it can be
perfectly antidiscriminated.

Proof. Let M = {Mi}i∈[N ] be a POVM that perfectly discriminates the states in E. Then, for all i ∈ [N ],
we have tr(Mi ρ̃i) = δi,j . Define M ′ = { 1

N−1 (1−Mi)}i∈[N ]. Then, for all i ∈ [N ], we have

tr(M ′iρi) =
1

N − 1
tr((1−Mi)ρi) =

1
N − 1

(1− tr(Miρi)) = 0. (2.46)

Thus, the states in E can be perfectly antidiscriminated.

Proposition 2.3.8. Let E = {ρ̃1, ρ̃2} be a binary ensemble. E can be perfectly antidiscriminated if and only
it can be perfectly discriminated.

Proof. One direction of the proof is clear from the previous proposition. For the converse, sup-
pose that E can be perfectly antidiscriminated. Then, there exists a POVM M = {M1,M2} such that
tr(Miρi) = 0 for i = 1,2. This implies that tr(M2ρ1) = tr(M1ρ2) = 1. Thus, POVM M ′ = {M2,M1}
perfectly discriminates the states in E.

Proposition 2.3.9. If an ensemble E = {ρ̃i}i∈[N ] contains at least two orthogonal states, then it can be
perfectly antidiscriminated.

Proof. Without the loss of generality, suppose that ρ1 and ρ2 are orthogonal states. Let M0
def== 1 −

ΠIm(ρ1)∪Im(ρ2) be the projector onto the orthogonal complement of the subspace spanned by ρ1 and
ρ2. Define the POVM M = {Mi}i∈[N ] as M1 = ΠIm(ρ2) + 1

2M0, M2 = ΠIm(ρ1) + 1
2M0, and Mi = 0 for i > 2.

Then, it can be seen that for all i ∈ [N ], we have tr(Miρi) = 0.

Corollary 2.3.10. For N > 2, there exist ensembles with N states that can be perfectly antidiscriminated,
but not perfectly discriminated.



Chapter 2. Quantum Guessing Games 11

Proof. It is enough to consider an ensemble containing two orthogonal states and two non-orthogonal
states. Then, from Proposition 2.3.1, the ensemble can not be perfectly discriminated, but it is im-
plied from Proposition 2.3.9 that the ensemble can be perfectly antidiscriminated.

Remark 2.3.11. The conditions under which a quantum ensemble can be perfectly antidiscriminated
are more complicated than the conditions for perfect discrimination, and has been the subject of
study in [HK18; JRS23], where necessary and sufficient conditions for perfect antidiscrimination of
pure states have been derived.

2.4 Applications of Quantum Guessing Games

So far, we have seen that quantum guessing games are a general framework that encompasses two
well-studied problems in quantum information theory, the quantum state discrimination and an-
tidiscrimination problems. A compelling question, however, is whether quantum guessing games,
in their most general form, find applications in quantum information theory. In this section, we
present two scenarios where quantum guessing games naturally arise, offering further motivation
for their study.

2.4.1 Quantum Random Access Codes

Quantum random access codes are useful tools that have found several applications in quantum in-
formation science, including quantum cryptography [PB11] and quantum information theory [Paw+09].
Here, we use the formalism introduced in [PAGK23] to show how quantum guessing games can be
used to study quantum random access codes.

Consider a communication scenario between Alice and Bob, in which Alice is given an n−character
string x ∈ [m]n, and she encodes this string in a qudit state via an encoding function x 7→ ρx ∈ L(Cd),
and sends it to Bob. Bob, on the other hand, is given y ∈ [n] as input and is asked to perform a
decoding measurement My = {My,b}b∈[m] on the received state to determine the y−th character of the
string. The goal is to find a pair of encoding preparation and decoding measurement that maximizes
the average success probability of Bob, given by

F def==
∑
x,y

αx,y tr(My,xyρx), (2.47)

where {αx,y}x∈[m]n,y∈[n] is a joint probability distribution over the inputs x and y, and xy is the y−th
character of the string x. Those pairs of encoding preparations and decoding measurements that
maximize the above functional are then called the optimal quantum encoding-decoding strategies for

the scenario described above, which is called an nm
d7→ 1 random access code (RAC).

A well-known algorithm for finding the optimal quantum encoding-decoding strategies for a
given RAC is the see-saw algorithm, in which one repeatedly optimizes over the encoding and decod-
ing strategies until convergence to a (possibly local) maximum of the success probability is achieved.
A more detailed description of the see-saw algorithm is given in Algorithm 1.

Note that in Step (2.49) of this algorithm, the algorithm is actually finding the optimal measure-

ment of a quantum guessing game. To see this, let us define a quantum guessing gameG(k)
y = (E(k),Ry)

for each y ∈ [n] and k ∈ [T ], where E(k) = { 1
mn ρ

(k)
x }x∈[m]n , and Ry is an n×mn matrix, where the (b,x)-th

entry is given by αx,yδb,xy . Then, we have Ropt(G
(k)
y ) = 1

mn maxMy

∑
x,bαx,yδb,xy tr(My,bρ

(k)
x ). This pro-

vides an example of how quantum guessing games arise in other problems in quantum information
theory.

2.4.2 Minimum Guesswork Discrimination

In [Che+15], the authors consider a different figure of merit for the quantum state discrimination
problem, called the guesswork, and define a new problem, called minimum guesswork discrimination.
In minimum guesswork discrimination, Alice picks a secret message xi from her alphabet X , and
sends a quantum state ρxi to Bob. In minimum-error discrimination, Bob’s goal is to identify the
message sent by Alice in one-shot, by asking Alice "is the message xj?", based on his measurement
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Algorithm 1 A See-Saw Algorithm for Quantum Random Access Codes

Require: F def==
∑

x,yαx,y tr(My,xyρx), to be maximized over all encoding preparations x 7→ ρx
and decoding measurements {My}y∈[n], where My = {My,b}b∈[m].

Initialize: A set of randomly chosen measurements {M(0)
y }y∈[n] where M(0)

y = {M(0)
y,b}b∈[m].

for k = 1 to T − 1 do
Maximization over the encoding preparations:

ρ
(k)
x ← argmax

ρx
tr

ρx

∑
y,b

αx,yδb,xyM
(k−1)
y,b

 , ∀x ∈ [m]n, (2.48)

The above maximizations are done over the set of all d × d density matrices.

Maximization over the decoding measurements:

M
(k)
y ← argmax

My

∑
x,b

αx,yδb,xy tr(My,bρ
(k)
x ), ∀y ∈ [n], (2.49)

The above maximizations are done over the set of all POVMs.

end for
Return: The quantum encoding-decoding strategies {ρ(T )

x }x∈[m]n and {M(T )
y }y∈[n].

outcomes. In minimum guesswork discrimination, Bob can query Alice multiple times, until he
hits the correct message. The goal is to minimize the expected number of queries Bob needs to
make to identify the message sent by Alice. It is notable that in quantum strategies, Bob can perform
multiple measurements on the quantum state, however, as was shown in [Han+21], the set of random
variables corresponding to the number of queries when Bob performs multiple measurements is
equal to the case where Bob performs a single measurement.

To state the problem formally, following the formalization given in [Che+15], let us start with the
classical setting. Consider a random variable X with alphabet X = {xi}i∈[n] and associated probability
distribution {p(xi)}i∈[n]. Bob, who knows both the alphabet and the distribution, aims to identify the
true value ofX by sequentially asking questions of the form "isX = xi?" until he hits the correct value.
The expected number of guesses Bob needs to make is known as the guesswork. In [Mas94], it was
shown that Bob’s optimal strategy is to arrange his queries in non-increasing order of probabilities
p(xi). The optimal guesswork of Bob is then given by

G(X) def==
n∑
i=1

σ (i)p(xi), (2.50)

where σ ∈ Sn such that p(xi) ≥ p(xj ) implies σ (i) ≤ σ (j).
This can be extended to the conditional case, where it is assumed that there exists a channel

between Alice and Bob with input set X and output set Y = {yj }j∈[m]. The channel is then specified
by the conditional distribution {p(yj | xi)}i∈[n],j∈[m]. The distribution of the random variable Y is given
by

p(yj ) =
n∑
i=1

p(xi)p(yj | xi), (2.51)

for j ∈ [m]. In the conditional case, when Bob detects yj , he applies the optimal strategy discussed
above on the posterior distribution {p(xi | yj )}i∈[n] to identify the true value of X. The guesswork is
then given by

G(X | Y ) def==
m∑
j=1

p(yj )
n∑
i=1

σj (i)p(xi | yj ), (2.52)

where σj ∈ Sn is a permutation such that p(xi | yj ) ≥ p(xk | yj ) implies σj (i) ≤ σj (k).
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Now, it is easy to define the guesswork in the quantum setting. Let X be Alice’s random variable,
which gives rise to an ensemble E = {ρ̃xi }i∈[n]. Bob performs a POVM M = {Myj }j∈[m] on the quantum
state received from Alice, giving rise to a conditional distribution {p(yj | xi)}i∈[n],j∈[m], where p(yj |
xi) = tr(Myjρxi ). The random variable YM is then determined according to (2.51). The minimum
guesswork of the ensemble E is defined as

GE
def== min

M
G(X | YM ), (2.53)

where the minimization is taken over all POVMs M.
To see how the minimum guesswork of an ensemble E can be related to the quantum guessing

games, let us rewrite G(X | YM ) as

G(X | YM ) =
m∑
j=1

p(yj )
n∑
i=1

σj (i)p(xi | yj ) (2.54)

=
m∑
j=1

n∑
i=1

σj (i)p(xi , yj ) (2.55)

=
m∑
j=1

n∑
i=1

σj (i)p(xi)p(yj | xi) (2.56)

=
m∑
j=1

n∑
i=1

σj (i) tr(Myj ρ̃xi ). (2.57)

(2.57) shows that the optimal measurements for the minimum guesswork discrimination of an en-
semble E are equal to the optimal measurements for the quantum guessing game G = (E ,Rm×n),

where Ri,j
def== 1 − σi(j). However, it has to be noted that the entries of the reward matrix R are not

constant; they depend on Bob’s measurement. This motivates extending the definition of quantum
guessing games to more general forms of reward matrices, which could be a possible direction for
future research.
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Chapter 3

Explicit Measurements

In the previous chapter, we addressed the challenges in finding a closed-form solution for the opti-
mal reward and measurement in a quantum guessing game. In Chapter 4, we will discuss numerical
methods developed to find these solutions with arbitrary precision. While these methods work well
for small-sized instances, they become impractical as the problem size increases. This limitation
motivates the investigation of explicit measurements that can be computed efficiently without the
need for solving an optimization problem, yet still perform well for the task.

The importance of such explicit measurements is underscored by the fact that in some quantum
guessing game scenarios, calculating the exact optimal reward isn’t necessary. Often, a lower or
upper bound on the optimal reward is sufficient. As we will see, some explicit measurements can
provide such bounds.

In this chapter, we first generalize the pretty good measurement, an explicit measurement exten-
sively studied in the context of quantum state discrimination [PW91; Hau+96; EF01; Mon07], to the
broader setting of quantum guessing games, and obtain two lower bounds on its expected reward.
We then review the Belavkin measurements, a larger family of explicit measurements that includes
the pretty good measurement as a special case [BM04]. Our discussion on Belavkin measurements
will be focused on the quantum state discrimination problem and will set the stage for our later
discussions on iterative algorithms in Chapter 5.

3.1 Pretty Good Measurement

The pretty good measurement (PGM), also known as the square-root measurement, is probably the
most well-known suboptimal measurement. It was first introduced by Peres and Wootters in [PW91]
for a special instance of QSD problem, and later by Hausladen et al. for a more general setting of
QSDs in [Hau+96]. In this section, we will generalize these measurements to the more general setting
of quantum guessing games. For the following discussion, unless otherwise stated, we will assume
that our ensembles are full-rank, and the reward matrices have no zero rows.

Definition 3.1.1. Let G = (E ,RL×N ) be a quantum guessing game. The pretty good measurement
M = {Mk}k∈[L] is a POVM defined as

Mi
def== Σ−

1
2

 N∑
j=1

Ri,j ρ̃j

Σ− 1
2 , (3.1)

for i ∈ [L], where

Σ
def==

L∑
i=1

N∑
j=1

Ri,j ρ̃j . (3.2)

Notation 3.1.2. We denote the expected reward of the pretty good measurement by RPGM(G) (or
simply RPGM when the game is clear from the context).

In Definition 3.1.1, if we consider the reward matrix R to be the reward matrix corresponding to
the QSD problem, the pretty good measurement will be of the form M = {Mi}i∈[L] where

Mi = Σ−
1
2 ρ̃iΣ

− 1
2 , Σ =

L∑
i=1

ρ̃i , (3.3)
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and the corresponding success probability is denoted by PPGM(E). Recall from Section ?? that any
quantum guessing game G = (E ,RL×N ) can be reduced to a QSD problem over the ensemble EG =
{τ̃i}i∈[L]. The pretty good measurement associated to this QSD problem is the POVM M = {Mi}i∈[L]
where

Mi =

 L∑
i=1

τ̃i


− 1

2

τ̃i

 L∑
i=1

τ̃i


− 1

2

(3.4)

=

 L∑
i=1

N∑
j=1

Ri,j ρ̃j


− 1

2
 N∑
j=1

Ri,j ρ̃j


 L∑
i=1

N∑
j=1

Ri,j ρ̃j


− 1

2

, (3.5)

which coincides with the measurement defined in Definition 3.1.1. Moreover, from (2.19), we have

PPGM(EG)∆G =RPGM(G), (3.6)

where ∆G
def==

∑L
i=1

∑N
j=1Ri,j tr(ρ̃j ).

Remark 3.1.3. In [MMS24], the authors define a measurement called the "pretty bad measurement,"
which performs pretty well for the task when Bob is trying to minimize his success probability in a
QSD problem (or equivalently, the task of quantum state antidiscrimination). Let G = {Gi}i∈[N ] be a
pretty good measurement for a QSD problem. The pretty bad measurement B = {Bi}i∈[N ] is defined
as

Bi
def==

1
N − 1

(1−Gi) . (3.7)

To see that this measurement coincides with the pretty good measurement defined for the quantum
state antidiscrimination problem, note that for the pretty good measurement M = {Mi}i∈[N ] for the
state antidiscrimination, we have

Mi =

 N∑
i=1

∑
j,i

ρ̃j


− 1

2
∑
j,i

ρ̃j


 N∑
i=1

∑
j,i

ρ̃j


− 1

2

(3.8)

=

 1
N − 1

N∑
i=1

ρ̃i


− 1

2
∑
j,i

ρ̃j


 1
N − 1

N∑
i=1

ρ̃i


− 1

2

(3.9)

=
1

N − 1

 N∑
i=1

ρ̃i


− 1

2
∑
j,i

ρ̃j


 N∑
i=1

ρ̃i


− 1

2

(3.10)

=
1

N − 1

 N∑
i=1

ρ̃i


− 1

2
 N∑
j=1

ρ̃j − ρ̃i


 N∑
i=1

ρ̃i


− 1

2

(3.11)

=
1

N − 1
(1−Gi) . (3.12)

This reflects what Hamlet once said to Rosencrantz: "There is nothing either good or bad, but thinking
makes it so."

3.1.1 Lower Bounds on the PGM’s Reward

The pretty good measurement is called pretty good, as its expected reward provides a decent lower
bound on the optimal reward of a quantum guessing game. The following proposition shows that
the pretty good measurement is at least as good as the uniform guessing strategy.

Proposition 3.1.4. For any quantum guessing game G = (E ,RL×N ),

RPGM ≥
∆G

L
, (3.13)
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where ∆G
def==

∑L
i=1

∑N
j=1Ri,j tr(ρ̃j ).

Proof. To prove the above bound, we follow the same steps as in the proof of [MMS24, Theorem 1].

Define r = {ri}i∈[L] as ri
def== ∥Σ

−1
4 (

∑N
j=1Rij ρ̃j )Σ

−1
4 ∥F , where Σ =

∑L
i=1

∑N
j=1Ri,j ρ̃j , and ∥ · ∥F denotes the

Frobenius norm (2-Schatten norm). Suppose that ⊕ denotes the addition modulo L andM = {Mi}i∈[L]
is the pretty good measurement. We have the following:

∆G =
L−1∑
s=0

 L∑
i=1

N∑
j=1

Rij tr
(
ρ̃jMi⊕s

) (3.14)

=
L−1∑
s=0

L∑
i=1

tr

Σ −1
4

 N∑
j=1

Rij ρ̃j

Σ −1
4 Σ

−1
4

 N∑
j=1

R(i⊕s)j ρ̃j

Σ −1
4

 (3.15)

≤
L−1∑
s=0

L∑
i=1

riri⊕s = ∥r∥21 ≤ L∥r∥
2
2, (3.16)

where the inequalities in the last line are obtained using the Cauchy–Schwarz inequality. We also
have:

RPGM =
L∑
i=1

N∑
j=1

Rij tr(ρ̃jMi) (3.17)

=
L∑
i=1

tr

Σ −1
4

 N∑
j=1

Rij ρ̃j

Σ −1
4 Σ

−1
4

 N∑
k=1

Rik ρ̃k

Σ −1
4

 (3.18)

=
L∑
i=1

r2
i = ∥r∥22 (3.19)

Thus,

RPGM ≥
∆G

L
. (3.20)

Remark 3.1.5. Although the above proposition for the special case of the QSD problem is one of
the main results in [MMS24], it is notable that this lower bound for the pure state ensembles can be
obtained more easily using the previously established lower bounds for PGM proved in [Mon07]. In
this paper, the author proves that for a QSD problem over an ensemble E = {ρ̃i}i∈[N ], where ρi ’s are
pure quantum states, i.e. ρi = |ψi⟩⟨ψi |, the expected success probability of the pretty good measure-
ment admits the following lower bound [Mon07, Section 2.2]:

PPGM ≥
N∑
i=1

q2
i∑N

j=1 qj

∣∣∣∣〈ψi | ψj〉∣∣∣∣2 . (3.21)

Note that the right-hand side of (3.21) is also greater than or equal to
∑N
i=1 q

2
i , which is by the AM-QM

inequality greater than or equal to 1
N .

What highlights the importance of the pretty good measurement is that it is not only a good
lower bound for the optimal reward, but it also provides an upper bound on the optimal reward of a
quantum guessing game. This was shown by Barnum and Knill in [BK02] for the special case of the
QSD problem, and it can directly be generalized to the quantum guessing games as follows.

Proposition 3.1.6. For any quantum guessing game G = (E ,RL×N ),

Ropt ≤
√
RPGM

√
∆G, (3.22)

where ∆G
def==

∑L
i=1

∑N
j=1Ri,j tr(ρ̃j ).
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Proof. The proof we present here follows the same steps as in the proof of [Wat18, Theorem 3.10].
Defining r = {ri}i∈[L] as in the proof of Proposition 3.1.4, for any measurement M = {Mk}k∈[L] we have

RM =
L∑
i=1

tr

 N∑
j=1

Ri,j ρ̃jMi

 (3.23)

=
L∑
i=1

tr

Σ −1
4

 N∑
j=1

Ri,j ρ̃j

Σ −1
4 Σ

1
4MiΣ

1
4

 (3.24)

≤
L∑
i=1

ri

∥∥∥∥Σ 1
4MiΣ

1
4

∥∥∥∥
F

(3.25)

≤

√√√
∥r∥22

L∑
i=1

∥∥∥∥Σ 1
4MiΣ

1
4

∥∥∥∥2

F
(3.26)

=

√√√
∥r∥22

L∑
i=1

tr(MiΣ
1
2MiΣ

1
2 ), (3.27)

where (3.25) and (3.26) are Cauchy–Schwarz inequalities. Since

tr(MiΣ
1
2MiΣ

1
2 ) ≤ tr(Σ

1
2MiΣ

1
2 ) = tr(MiΣ), (3.28)

we have

RM ≤

√√√
∥r∥22

L∑
i=1

tr(MiΣ
1
2MiΣ

1
2 ) (3.29)

≤

√√√
∥r∥22

L∑
i=1

tr(MiΣ) (3.30)

=
√
∥r∥22 tr(Σ). (3.31)

We saw earlier that ∥r∥22 =RPGM, and tr(Σ) = ∆G. Thus,

Ropt ≤
√
RPGM

√
∆G. (3.32)

Remark 3.1.7. Since a quantum guessing game’s expected reward is always between 0 and 1, the
above bound is meaningful only if

√
RPGM

√
∆G ≤ 1.

Remark 3.1.8. The lower and upper bounds derived in Propositions 3.1.4 and 3.1.6 can both be
obtained by applying the same bounds for the pretty good measurement in the QSD problem to
(3.6).

3.2 Belavkin Measurements

In this section, we limit our discussion to the QSD problem. The Belavkin measurements are a family
of (possibly) suboptimal measurements introduced in [Bel75] for this problem. In what follows,
assume that E is an ensemble of quantum states {ρi}i∈[N ] with associated probabilities {qi}i∈[N ], and
for all i ∈ [N ], ρi = ψiψ

†
i , where ψi is a d × rank(ρi) matrix.
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Definition 3.2.1. For an ensemble E, the Belavkin measurement with associated weights w = {wi ∈
Pos(Crankρi )}i∈[N ] is defined as

Mi
def== (Σ(w))

− 1
2ψiwiψi

†(Σ(w))
− 1

2 , (3.33)

for i ∈ [N ], where

Σ(w) def==
N∑
i=1

ψiwiψi
†. (3.34)

Remark 3.2.2. If ρi is a pure state, wi has to be a positive real number.

Notation 3.2.3. For i ∈ [N ], we denote the operator ψ†i Σ
(w)−

1
2ψi by Yi .

Remark 3.2.4. LetM = {Mi}i∈[N ] be the Belavkin measurement associated with weightsw = {wi}i∈[N ].
We have

tr(ρiMi) = tr(ρi(Σ
(w))
− 1

2ψiwiψi
†(Σ(w))

− 1
2 ) (3.35)

= tr(ψiψi
†(Σ(w))

− 1
2 ρi(Σ

(w))
− 1

2wi) (3.36)

= tr(ψi
†(Σ(w))

− 1
2ψiwiψi

†(Σ(w))
− 1

2ψi) (3.37)

= tr(YiwiYi). (3.38)

Example 3.2.5. LetM = {Mi}i∈[N ] be the Belavkin measurement associated with weightsw = {wi}i∈[N ],
where wi = qi for all i ∈ [N ]. This measurement coincides with the pretty good measurement.

Definition 3.2.6. For an ensemble E, the Belavkin measurement with associated weightsw = {wi}i∈[N ]
where wi = qi ρ̃i is called the Holevo measurement.

3.2.1 Optimality Condition for Belevkin Measurements

This short section reviews the condition under which a Belavkin measurement is optimal for a QSD
problem. We restate the result from [BM04] without proof.

Proposition 3.2.7 (Optimality Condition for Belevkin Measurements [BM04]). A POVMM = {Mi}i∈[N ]
is optimal for a quantum state discrimination problem over an ensemble E = {(ρi ,qi)}i∈[N ], where ρi =

ψiψ
†
i , if and only if it is identical to a Belavkin measurement M(w) = {M(w)

i }i∈[N ] associated with weights
w = {wi}i∈[N ] such that there exists α > 0 satisfying

qiY
(w)
i ≤ α1rank(ρi ), (3.39)

qiY
(w)
i wi = αwi , (3.40)

for all i ∈ [N ], where

Y
(w)
i

def== ψ†i
(
Σ(w)

)−1/2
ψi , and Σ(w) def==

N∑
i=1

ψiwiψ
†
i . (3.41)

Remark 3.2.8. Proposition 3.2.7 highlights the importance of the Belavkin measurements, as the
optimal measurements for a QSD problem are always Belavkin measurements.
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Chapter 4

Semidefinite Programming

Semidefinite programming (SDP) is a subfield of convex optimization that extends linear program-
ming to optimize linear objective functions over the intersection of the cone of positive semidefinite
matrices and an affine space. This optimization framework has proven to be a powerful tool in var-
ious fields, including quantum information theory, control theory, and combinatorial optimization.
Its effectiveness is due to two main factors:

• Semidefinite programs can be efficiently solved using interior point methods. These meth-
ods were initially developed by Karmarkar [Kar84] for linear programs and later extended to
semidefinite programming by Nesterov and Nemirovskii [NN92; NN94], and Alizadeh [Ali91].

• Many problems, particularly in quantum information theory, can be directly formulated as
semidefinite programs or approximated by SDPs. This allows SDP solvers to find exact or
approximate solutions for these problems.

In this chapter, we study how quantum guessing games can be formulated as SDPs and what un-
derstanding this formulation offers about them. We first review a standard form of semidefinite
programs in Section 4.1 and the fundamental concept of duality of the SDPs. Then, in Section 4.2
we formulate the quantum guessing games as standard SDPs, and by studying the duality, we ob-
tain necessary and sufficient conditions for the optimality of a measurement for a quantum guessing
game. Although the contents of this chapter have all been investigated before, mainly in [MSU23]
in the case of quantum guessing games, the derivation of the results presented here has been done
independently by the author.

4.1 SDP Primal-Dual Formulation

Semidefinite programs are constrained optimization problems where the objective function is linear
in a Hermitian matrix variable, and the constraints are linear matrix inequalities. In this section, we
discuss the standard form of a semidefinite program, its dual problem, and two important properties
known as weak and strong duality. This section is based on the presentation in [SC23].

A general form of a semidefinite program is as follows:

Primal SDP

maximize : tr(AX),

subject to : Φi(X) = Bi , i ∈ [m]

Γj (X) ≤ Cj , j ∈ [n]

(4.1)

where X is a Hermitian matrix variable, A, Bi ’s and Cj ’s are Hermitian matrix constants, and Φi ’s
and Γj ’s are Hermiticity-preserving linear maps. Even though the above form is general, many SDPs
encountered in practice are not initially written in this form. We refer to an optimization problem
where the objective function is linear in Hermitian matrix variables and the constraints are linear
matrix (in)equalities as a general SDP, while those in the above form are called standard SDPs.

Having an SDP formulation for a problem, which we call the primal problem, finding a lower
bound on the optimal value is straightforward. One can find a feasible solution for the problem, and
then the objective value of this feasible solution is a lower bound on the optimal value of the primal.
Finding upper bounds, however, is not as simple, at least at first glance.
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One can associate a dual problem with any SDP, which is an SDP, and its feasible solutions pro-
vide upper bounds on the optimal value of the primal problem. This dual problem can be obtained
by writing the Lagrangian for the primal problem and then imposing proper conditions on the La-
grange multipliers to ensure that the derived constrained problem has the desired properties.

Associating Lagrange multipliers Yi and Zj with the equality and inequality constraints of the
primal problem, respectively, the Lagrangian for the primal can be written as:

L(X,Y,Z) = tr(AX) +
m∑
i=1

tr (Yi (Bi −Φi (X))) +
n∑
j=1

tr
(
Zj

(
Cj − Γj (X)

))
(4.2)

= tr


A− m∑

i=1

Φ∗i (Yi)−
n∑
j=1

Γ ∗j
(
Zj

)X
+

m∑
i=1

tr (YiBi) +
n∑
j=1

tr
(
ZjCj

)
. (4.3)

We impose the constraints Zj ≥ 0 for all j ∈ [n], to ensure that L(X,Y,Z) ≥ tr(AX) for all feasible
solutions (X,Y,Z). Next, we impose the constraint A −

∑m
i=1Φ

∗
i (Yi) −

∑n
j=1 Γ

∗
j (Zj ) = 0 to make the

Lagrangian independent of X. This leads us to the dual problem, which is formulated as follows:

Dual SDP

minimize :
m∑
i=1

tr(BiYi) +
n∑
j=1

tr(CjZj ),

subject to : A−
m∑
i=1

Φ∗i (Yi)−
n∑
j=1

Γ ∗j (Zj ) = 0,

Zj ≥ 0, j ∈ [n].

(4.4)

From our construction, it is evident that the value of every feasible solution of the dual is an upper
bound on the optimal value of the primal. Hence, the optimal value of the dual is also an upper
bound on the optimal value of the primal. This relationship is called weak duality and holds for
every SDP.

Under some conditions that are satisfied in many practical examples, including almost all SDPs
appearing in quantum information theory, the optimal values of the primal and dual problems are
equal. This property is known as strong duality. When strong duality holds, the dual problem pro-
vides an alternative formulation of the original problem, initially formulated as the primal.

One famous condition for strong duality is given by Slater’s theorem. According to this theorem,
if the primal (or dual) has a finite optimal value and there exists a feasible solution that satisfies the
inequality constraints strictly, then strong duality holds. It is sufficient for the primal and dual to be
both strictly feasible for these conditions to be met.

When strong duality holds, from the equality of the objective values of the primal and the dual,
one can derive a relationship between the optimal solutions of the primal and the dual, called the
complementary slackness. Let X∗ and Y∗,Z∗ be the optimal solutions of the primal and the dual, re-
spectively. Then, if strong duality holds, from (4.2) we have

m∑
i=1

tr(Z∗j (Γj (X
∗)−Cj )) = 0, (4.5)

implying that for all j ∈ [n],
Z∗j (Γj (X

∗)−Cj ) = 0 (4.6)

4.2 Quantum Guessing Games as SDPs

In this section, we formulate quantum guessing games as standard SDPs. For quantum state dis-
crimination this was done in [JŘF02; Eld03; WGM08; SC23], for quantum state antidiscrimination
in [Ban+14] and for quantum guessing games in [MSU23]
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4.2.1 Standard SDP Formulation

Remember that a quantum guessing gameG = (E ,RL×N ) is associated with the following optimization
problem:

maximize :
L∑
i=1

N∑
j=1

Rij tr(ρ̃jMi),

subject to :
L∑
i=1

Mi = 1d , Mi ≥ 0, i ∈ [L].

(4.7)

It is clear that the above maximization problem is an informal semidefinite program. In the follow-
ing, we will show how to formulate this problem as a formal SDP.

For a quantum guessing game G = (E ,RL×N ), where ρ̃1, . . . , ρ̃N ∈ L(Cd), let X def== L(Cd) and Y def==
L(CL). We define the following matrices and maps:

A
def==

L∑
i=1

|i⟩⟨i| ⊗ (
N∑
j=1

Ri,j ρ̃j ) ∈ Y ⊗X , B
def== 1d ∈ X , C

def== 0 ∈ X , (4.8)

Γ
def== −IY ⊗X , and Φ

def== trY . (4.9)

It is straightforward to see that A, B, and C are Hermitian matrices, and Φ and Γ are Hermiticity-
preserving linear maps. Now, consider the following formal SDP:

Primal (Standard)

maximize : tr(AX),

subject to : Φ(X) = B,

Γ (X) ≤ C.

(4.10)

Proposition 4.2.1. Problems (4.10) and (4.7) are equivalent.

Proof. To see why Problem (4.10) is equivalent to the general SDP (4.7), note that for any POVM

M = {Mi}i∈[L], we can define a matrix X ∈ Y ⊗X as X def==
∑L
i=1 |i⟩⟨i| ⊗Mi . Then, we have

Φ(X) = trY (X) = trY

 L∑
i=1

|i⟩⟨i| ⊗Mi

 =
L∑
i=1

Mi = 1d = B, (4.11)

and X ≥ 0. Thus, X is a feasible solution for the standard SDP (4.10). The objective value of X is

tr(AX) = tr


 L∑
i=1

|i⟩⟨i| ⊗ (
N∑
j=1

Ri,j ρ̃j )


 L∑
i=1

|i⟩⟨i| ⊗Mi


 (4.12)

= tr

 L∑
i=1

|i⟩⟨i| ⊗ (
N∑
j=1

Ri,j ρ̃jMi)

 (4.13)

=
L∑
i=1

N∑
j=1

Rij tr(ρ̃jMi), (4.14)

which is the objective value of the general SDP (4.7). This shows that the optimal value of the
standard SDP (4.10) is greater than or equal to the optimal value of the general SDP (4.7).

On the other hand, for any feasible solution X of the standard SDP (4.10), we can write X =∑
i,j∈[L] |i⟩⟨j | ⊗Xi,j . Define Mi

def== Xi,i for i ∈ [L]. Each Mi is a diagonal block of a positive definite
matrix X, thus Mi ≥ 0. Moreover,

L∑
i=1

Mi =
L∑
i=1

Xi,i = trY (
L∑
i=1

|i⟩⟨i| ⊗Xi,i) = trY (X) = B, (4.15)
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which implies that M = {Mi}i∈[L] is a POVM. Finally, we have

tr(AX) = tr


 L∑
i=1

|i⟩⟨i| ⊗ (
N∑
j=1

Ri,j ρ̃j )


 ∑
i,j∈[L]

|i⟩⟨j | ⊗Xi,j


 (4.16)

= tr

 L∑
i=1

L∑
k=1

|i⟩⟨k| ⊗ (
N∑
j=1

Ri,j ρ̃jXi,k)

 (4.17)

=
L∑
i=1

N∑
j=1

Rij tr(ρ̃jMi), (4.18)

which shows that the optimal value of the standard SDP (4.10) is less than or equal to the optimal
value of the general SDP (4.7). Therefore, Problems (4.10) and (4.7) are equivalent.

Now, using the dual form provided in (4.4), we can write the dual problem of the standard SDP
(4.10) as

Dual (standard)

minimize : tr(Y ),

subject to : A−1Y ⊗Y +Z = 0,

Z ≥ 0.

(4.19)

or equivalently,
Dual (general)

minimize : tr(Y ),

subject to : Y ≥
N∑
j=1

Rij ρ̃j , i ∈ [L].
(4.20)

Proposition 4.2.2. Strong duality holds for the SDP formulation of quantum guessing games.

Proof. The primal has finite optimal value, as the optimal reward is always bounded above by LN .
It is also strictly feasible, as M = { 1L1d}i∈[L] is a feasible solution. Thus, by Slater’s theorem, strong
duality holds.

Remark 4.2.3. The dual problem (4.20) admits a simple geometric interpretation, as illustrated in
4.2.1. Consider the cone of positive semidefinite matrices Pos(Cd), with zero matrix as the apex. For
i ∈ [L], each

∑N
j=1Rij ρ̃j is a point in this cone, and we can translate a copy of the cone of PSD matrices

to each of these points, which specify the constraints Y ≥
∑N
j=1Rij ρ̃j . The dual problem (4.20) asks

for a point in the intersection of these translated cones that is closest to the apex of the PSD cone with
respect to the trace distance. This optimal distance is equal to the optimal reward of the quantum
guessing game.

4.2.2 Optimality Criteria

Although finding a closed-form solution for the optimal measurements of a quantum guessing game
is not easy, using the semidefinite primal and dual problems, we can obtain a simple-to-check nec-
essary and sufficient optimality criterion for a measurement. The key tool for this is the comple-
mentary slackness. Using (4.6) and (4.19), the complementary slackness condition for a quantum
guessing game can be written as:

(Y ∗ −
N∑
j=1

Rij ρ̃j )M
∗
i =M∗i (Y

∗ −
N∑
j=1

Rij ρ̃j ) = 0, i ∈ [L]. (4.21)

where M∗ = {M∗i }i∈[L] and Y ∗ are the optimal solutions of the primal and the dual, respectively.
The following proposition is a generalization of the Holevo–Yuen–Kennedy–Lax theorem [Wat18].

A similar statement can be found in [Hel82].
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Figure 4.1: The cone of positive
semidefinite matrices and the cones
corresponding to the constraints of the
dual problem of a quantum guessing

game.

Proposition 4.2.4. Let G = (E ,RL×N ) be a quantum guessing game, and M = {Mi}i∈[L] be a measurement.
The followings are equivalent:

1. M = {Mk}k∈[L] is an optimal measurement for G.

2. Z def==
∑L
i=1(

∑N
j=1Rij ρ̃j )Mi is Hermitian and for all i ∈ [L], Z ≥

∑N
j=1Rij ρ̃j .

3. There exists an operator Y such that for all i ∈ [L],

Y ≥
N∑
j=1

Rij ρ̃j ,

and

YMi =
( N∑
j=1

Rij ρ̃j
)
Mi .

Proof. (1 =⇒ 3): Let M = {Mi}i∈[L] be an optimal measurement for G. For any dual-optimal solution
Y , by the complementary slackness, we have

YMi =
( N∑
j=1

Rij ρ̃j
)
Mi . (4.22)

Note that Y is in particular a feasible solution of the dual, which implies that for i ∈ [L], Y ≥∑N
j=1Ri,j ρ̃j .

(3 =⇒ 2): Suppose that Y satisfies YMi =
(∑N

j=1Rij ρ̃j
)
Mi for all i ∈ [L]. By summimg up both sides

over i, we have

Y =
L∑
i=1

( N∑
j=1

Rij ρ̃j
)
Mi . (4.23)

Moreover, Y is Hermitian, as Y ≥
∑N
j=1Ri,j ρ̃j for all i ∈ [L], and ρ̃j ’s are Hermitian.

(2 =⇒ 1): Note thatZ is a feasible solution of the dual, and its objective value is tr(Z) =
∑N
i=1

∑L
j=1Rij tr(ρ̃jMi).

Since the dual and the primal objectives are equal for Z andM, it is implied that Z andM are optimal
solutions of the dual and the primal.
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Chapter 5

Iterative Algorithms for Quantum
Guessing Games

In the previous chapter, we discussed how the quantum state discrimination problem, or more gen-
erally, quantum guessing games, can be formulated as semidefinite programs. Although finding
closed-form solutions for these problems is difficult, interior-point methods offer numerical solu-
tions in polynomial time with respect to the input size. However, these methods become intractable
as the input size increases, which has led researchers to explore alternative optimization algorithms
that are more efficient and specifically designed for quantum state discrimination [Hel82; Tys09a;
JŘF02].

One such alternative approach that has gained attention in recent years involves designing it-
erative algorithms based on the optimality conditions of an optimization problem. Over the past
two decades, various iterative algorithms have been proposed for different quantum information
problems, including quantum state discrimination [JŘF02; NKU15], maximum likelihood estima-
tion in quantum process tomography [Hra+04], average fidelity estimation [AKF22], and the matrix
projection problem [BRT23].

In this chapter, we focus on an iterative algorithm proposed by Ježek, Řeháček, and Fiurášek
[JŘF02], referred to as the JRF algorithm. This algorithm is derived from the complementary slack-
ness condition, and while numerical evaluations suggest it converges to the optimal solution, a for-
mal proof of convergence is still missing in the general case. However, it has been proven to converge
for the special case of linearly independent pure ensembles [NKU15].

We begin by generalizing the JRF algorithm to the setting of quantum guessing games in Section
5.1. In Section 5.2, we review a modified version of the JRF algorithm, proposed by Nakahira, Kato,
and Usuda [NKU15], which we refer to as the NKU algorithm. In Section 5.3, we connect the JRF
algorithm to a class of iterative methods known as Minorization-Maximization (MM) algorithms.
The chapter concludes with a discussion on the fixed-point analysis of the JRF algorithm and its MM
counterpart in Section 5.4.

5.1 JRF Algorithm

In [JŘF02], the authors proposed an iterative algorithm to solve the QSD problem based on the com-
plementary slackness condition of semidefinite programs. In this section, we extend their algorithm
to the more general setting of quantum guessing games. Throughout this section, unless stated oth-
erwise, we assume that the ensemble E = {ρ̃k}k∈[N ] is full-rank and that the reward matrix R has no
rows identical to zero. This assumption ensures that the operators for which we compute the inverse
are indeed invertible. However, if this assumption does not hold, operator inverse can be replaced
by the Moore-Penrose pseudoinverse, as was done by the authors in [JŘF02].

From Proposition 4.2.4, we know that a POVMM = {Mi}i∈[L] is optimal, if and only if there exists
an operator Y such that for all i ∈ [L],

Y ≥
N∑
j=1

Rij ρ̃j , (5.1)
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and

YMi =
( N∑
j=1

Rij ρ̃j
)
Mi , ∀i ∈ [L]. (5.2)

Condition (5.2) is thus a necessary condition for optimality. Note that (5.1) together with our as-
sumption that R has no rows identical to zero and E is full-rank, it implies that Y is full-rank and,
therefore, invertible.

Now assume that an invertible Hermitian operator Y satisfies (5.2). Right-multiplying both sides
of (5.2) by Y −1, we obtain

Mi = Y −1
( N∑
j=1

Rij ρ̃j
)
Mi . (5.3)

Since Y , Mi ’s and ρ̃j ’s are Hermitian, we can write (5.3) as

Mi =Mi

( N∑
j=1

ρ̃jRij
)
Y −1. (5.4)

Substituting (5.4) into (5.3), we obtain

Mi = Y −1
( N∑
j=1

Rij ρ̃j
)
Mi

( N∑
j=1

ρ̃jRij
)
Y −1. (5.5)

The above equation specifies another necessary condition for optimality of a measurement.
An iterative algorithm based on this condition can be constructed as follows. The algorithm

starts by setting M(0)
i = 1d /L for all i ∈ [L], and at each iteration, it updates the measurements by

M
(k+1)
i = Σ(k)

−1
2
( N∑
j=1

ρ̃jRij
)
M

(k)
i

( N∑
j=1

ρ̃jRij
)
Σ(k)

−1
2 , (5.6)

where

Σ(k) def==
L∑
i=1

( N∑
j=1

ρ̃jRij
)
M

(k)
i

( N∑
j=1

ρ̃jRij
)
. (5.7)

Note that at each iteration k, Σ(k) is a Hermitian operator, and since M(0) is a full-rank POVM, the
ensemble is full-rank, and R has no rows identical to zero, Σ(k) is invertible for all k’s.

One can define a mapping M = {Mi}i∈[L]
T7→M(+) = {M(+)

i }i∈[L] as

T (M) =
⊕
k

Σ −1
2

 N∑
j=1

ρ̃jRij

Mi

 N∑
j=1

ρ̃jRij

Σ −1
2

 , (5.8)

on the space of L-tuples of operators acting on Cd , where

Σ
def==

L∑
i=1

 N∑
j=1

ρ̃jRij

Mi

 N∑
j=1

ρ̃jRij

 . (5.9)

A sequence of measurements {M(k)} that is obtained by the JRF algorithm can be seen as a sequence
obtained by the dynamic T , i.e., M(k+1) = T (M(k)). If this sequence converges to a fixed-point M,
then M satisfies Condition (5.5), which is a necessary condition for optimality.

The JRF algorithm for quantum guessing games is summarized in Algorithm 2.

Remark 5.1.1. The map T defined in (5.8) can be seen as a composition of:

1. a sandwiching map S(M) def==
⊕

i

(∑N
j=1 ρ̃jRij

)
Mi

(∑N
j=1 ρ̃jRij

)
, and
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Algorithm 2 JRF Algorithm for Quantum Guessing Games

Input: A quantum guessing game G = {E ,RL×N }, and the number of iterations T .
Initialize: Initial measurement M(0) = {1dL }i∈[L].
for k = 0,1, . . . ,T − 1 do

Σ(k)←
L∑
i=1

( N∑
j=1

ρ̃jRij
)
M

(k)
i

( N∑
j=1

ρ̃jRij
)
, (5.10a)

M
(k+1)
i ← Σ(k)

−1
2
( N∑
j=1

ρ̃jRij
)
M

(k)
i

( N∑
j=1

ρ̃jRij
)
Σ(k)

−1
2 . (5.10b)

end for
Output: The measurement M(T ) = {M(T )

i }i∈[L].

2. a normalization mapN (M) def==
⊕

i (
∑L
i=1Mi)

−1
2 Mi(

∑L
i=1Mi)

−1
2 .

The sandwiching map S is a linear map, and thus, it is continuous. However, we do not have a proof
for the continuity of the normalization mapN , and it might not be true, as the map M = {Mi}i∈[L] 7→

(
∑L
i=1Mi)

−1
2 is not continuous when

∑L
i=1Mi is singular.

Similar to the observation of Ježek, Řeháček, and Fiurášek [JŘF02], by running numerical sim-
ulations, we observe that our generalized JRF algorithm converges to the optimal solution. This is
illustrated in Figure 5.1, where we plot the difference Ropt−RM(k) against the number of iterations
k for 50 random instances with N = L = 3 and d = 2. To obtain the optimal reward, we use the
python API PICOS [SS22] with the solver MOSEK [ApS24]. For each instance, we generate a set of
Haar-random states {ρi}i∈[N ], using methods provided in the python package toqito [Rus21], and
the prior probabilities and the reward matrices are generated uniformly at random.

For each iteration, the median of the differences Ropt−RM(k) over the 50 instances and the in-
terquartile range are plotted. As can be understood from the plot, the expected reward of the mea-
surement M(k) converges to the optimal reward Ropt as the number of iterations increases. This
convergence is, however, not so fast for some instances, and the algorithm might require a large
number of iterations to converge.

Figure 5.1: Convergence of the JRF algorithm for quantum guessing games.
The difference Ropt−RM(k) is plotted against the number of iterations for 50

random instances, each with N = L = 3 and d = 2.
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To ensure that convergence behavior is observed across all samples, we plotted the difference
|Ropt−RM(k) | against the number of iterations for each random instance. An example of one such
plot is shown in Figure 5.1. While a monotonically decreasing behavior is observed for |Ropt−RM(k) |
among all instances, as comparing Figures 5.1 and 5.2 suggests, the rate of convergence can vary
significantly among different games.

Figure 5.2: An example of the convergence behavior of the JRF algorithm for
quantum guessing games. Here, the difference Ropt−RM(k) is plotted against
the number of iterations for one of the random instances used in the numeri-

cal results of Figure 5.1.

This low rate of convergence of the JRF algorithm can make it inefficient when a high precision
solution is required. In Figure 5.3, we compare the runtime of the JRF algorithm with the runtime
of the SDP solver MOSEK for different number of states N and different accuracy levels for the JRF
measurements. We take our quantum guessing game to be the quantum state discrimination game
over qubit ensembles with equal prior probabilities.

We plot the runtime of both algorithms against the number of states. The JRF output is con-
sidered for two accuracy levels, 10−2 and 10−5, meaning that as soon as the difference between the
optimal reward and the reward of the JRF measurements becomes smaller than the accuracy level,
the JRF algorithm terminates. The runtimes are evaluated for 100 Haar-random ensembles for each
N . The medians and the interquartile ranges are depicted in the plots. As can be seen from the plots,
for low accuracy levels, the JRF algorithm is preferable to the SDP solvers, as it performs faster.
However, due to the slow convergence of the JRF algorithm, it becomes inefficient for high accuracy
levels, and the SDP solver is more preferable.

5.2 NKU Algorithm

A modified version of the JRF algorithm was proposed by Nakahira, Kato, and Usuda [NKU15],
which we refer to as the NKU algorithm. Similar to the JRF algorithm, the NKU algorithm is based
on a necessary condition for the optimality of a Belavkin measurement. However, it can also be seen
as a special case of the JRF algorithm, in which instead of starting from the indifferent measurement
M0 = {1/L}i ∈ [L], one starts from a Belavkin measurement.

Proposition 5.2.1. Let M(w) = {M(w)
i }i∈[N ] be a Belavkin measurement with associated weights w =

{wi}i∈[N ] for a QSD problem over the ensemble E = {(ρi ,qi)}i∈[N ]. Then the JRF iterate of M(w) accord-

ing to (5.6), (M(w))
(+)

= {(M(w)
i )

(+)
}i∈[N ], is also a Belavkin measurement with corresponding weights
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Figure 5.3: Runtime comparison of the JRF algorithm and the SDP solver
MOSEK for quantum state discrimination over N qubits with equal prior prob-
abilities. The accuracy of the JRF algorithm has been considered for two lev-

els, 10−2 and 10−5.

w(+) = {w(+)
i }i∈[N ], where

w
(+)
i = q2

i Y
(w)
i wiY

(w)
i , (5.11)

for all i ∈ [N ].

Proof. Recall from Section 3.2 that a Belavkin measurement M(w) is a POVM with elements M(w)
i =

(Σ(w))
− 1

2ψiwiψi
†(Σ(w))

− 1
2 . Applying the JRF update rule (5.6) to M(w), we have

(M(w)
i )

(+)
=

 N∑
i=1

ρ̃iM
(w)
i ρ̃i


− 1

2

ρ̃iM
(w)
i ρ̃i

 N∑
i=1

ρ̃iM
(w)
i ρ̃i


− 1

2

(5.12)

=

 N∑
i=1

q2
i ψiψ

†
iM

(w)
i ψiψ

†
i


−1
2

q2
i ψiψ

†
iM

(w)
i ψiψ

†
i

 N∑
i=1

q2
i ψiψ

†
iM

(w)
i ψiψ

†
i


−1
2

(5.13)
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Note that

ψ†iM
(w)
i ψi =ψ†i (Σ(w))

− 1
2ψiwiψi

†(Σ(w))
− 1

2ψi = Y (w)
i wiY

(w)
i . (5.14)

Substituting ψ†iM
(w)
i ψi = Y (w)

i wiY
(w)
i into (5.13), we obtain

(M(w)
i )

(+)
=

 N∑
i=1

ψi(q
2
i Y

(w)
i wiY

(w)
i )ψ†i


−1
2

ψi(q
2
i Y

(w)
i wiY

(w)
i )ψ†i

 N∑
i=1

ψi(q
2
i Y

(w)
i wiY

(w)
i )ψ†i


−1
2

,

which shows that (M(w))
(+)

= {(M(w)
i )

(+)
}i∈[N ] is a Belavkin measurement with weightsw(+)

i = q2
i Y

(w)
i wiY

(w)
i .

A detailed description of the NKU algorithm is provided in Algorithm 3.

Algorithm 3 NKU Algorithm for the QSD problem [NKU15]

Input: An ensemble E = {ρ̃}i∈[N ], where ρi = ψiψ
†
i

Initialize: Initial weightsw(0) = {w(0)
i }i∈[N ], wherew(0)

i = qi1d (corresponding to the PGM),

or w(0)
i = qi ρ̃i (corresponding to the Holevo measurement).

for k = 0,1, . . . ,T − 1 do

Y
(k)
i ← ψ†i

 N∑
j=1

ψjw
(k)
j ψ

†
j


−1
2

ψi , (5.15a)

w
(k+1)
i ← q2

i Y
(k)
i w

(k)
i Y

(k)
i . (5.15b)

end for
Output: The Belavkin measurement M(w(T )), associated with the weights w(T ) = {w(T )

i }i∈[N ].

The main difference between the JRF algorithm and the NKU algorithm is that the NKU algo-
rithm starts from a Belavkin measurement, and instead of updating the measurements, it updates
the weights of the Belavkin measurement according to (5.11). As discussed in [NKU15], this mod-
ification has advantages: the NKU algorithm has lower computational complexity compared to the
JRF algorithm, as the size of the weights can be smaller than the size of the measurement operators.
Moreover, the speed of convergence can be accelerated by modifying the update rule to

w
(+)
i = q2

i (Y (w)
i )αwi(Y

(w)
i )α , (5.16)

with α > 1.
As mentioned earlier, the update rule of the NKU algorithm can be derived from a necessary con-

dition for the optimality of a measurement. Recall from Proposition 3.2.7 that a necessary condition
for optimality of a Belavkin measurement M(w) is that there exists α > 0 such that for all i ∈ [N ],

wi = qiα
−1Y

(w)
i wi . (5.17)

Note that in the NKU algorithm, if the weights w(k) converge to a fixed-point w = {wi}i∈[N ], that
satisfies

wi = (qiY
(w)
i )wi(qiY

(w)
i ), (5.18)

from the fact that wi ’s and qiYi ’s are PSD matrices, one can conclude [NKU15, Remark 10] that

wi = qiY
(w)
i wi , (5.19)

which is Condition (5.17) with α = 1.



Chapter 5. Iterative Algorithms for Quantum Guessing Games 30

We end this section by mentioning that the convergence of the NKU algorithm has been proven
for the case of linearly independent pure ensembles [NKU15, Theorem 5]. The proof extensively uses
the fact that when the states are pure, wi ’s and Yi ’s are positive numbers, and thus they commute
with other operators.

5.3 JRF Algorithm as an MM Algorithm

In this section, building on the results of Tyson [Tys10], we relate the JRF algorithm to a well-
studied class of iterative optimization methods known as MM (Minorization-Maximization) algo-
rithms. Viewing the JRF algorithm as an MM algorithm not only deepens our understanding of the
algorithm itself, but also allows us to explore whether the convergence of the JRF algorithm can be
derived from the well-established convergence results of MM algorithms.

MM Algorithms

MM algorithms, which stand for minorization-maximization algorithms in maximization problems
(or majorization-minimization in minimization problems), are a class of iterative optimization al-
gorithms constructed based on the MM principle. The MM principle for maximizing an objective
function f (x) prescribes the following procedure: At each iteration k, first, the objective function
f (x) must be minorized by a surrogate function g(x|x(k)), and then the surrogate function g(x|x(k))
must be maximized to obtain a new iterate x(k+1). A schematic representation of the MM principle is
shown in Figure 5.3, and the MM algorithm is summarized in Algorithm 4.

Algorithm 4 Minorization-Maximization (MM) Algorithm

Require: Objective function f (x) to be maximized
1: Initialize: Initial iterate x(0)

2: for k = 0 to T − 1 do
3: Minorize f (x) by a surrogate function g(x | x(k)) at x(k)

4: x(k+1)← argmaxx g(x | x(k))
5: end for
6: Return: x(T )

x(k)x(k+1)

f (x(k+1))

f (x(k))

f (x)
g(x|x(k))

Figure 5.4: A schematic repre-
sentation of the MM principle
for maximization of an objec-
tive function f (x). At each iter-
ation, f is minorized by a sur-
rogate function g(x|x(k)) at the
current iterate x(k), and then
the surrogate function is max-
imized to obtain a new iterate

x(k+1).

Minorization of f by a surrogate function g(x|x(k)) at x(k) means that (1) g(x|x(k)) is tangent to f (x)
at x(k), i.e., g(x(k)|x(k)) = f (x(k)), and (2) g(x|x(k)) is a lower bound for f (x), i.e., g(x|x(k)) ≤ f (x) for all x
[Lan16]. These two conditions ensure that the sequence {f (x(k))} is non-decreasing (ascent property),
as we have

f (x(k+1)) ≥ g(x(k+1)|x(k)) ≥ g(x(k)|x(k)) = f (x(k)). (5.20)



Chapter 5. Iterative Algorithms for Quantum Guessing Games 31

Tyson’s Directional Iteration

In [Tys10], Tyson showed that the quantum state discrimination can be seen as an instance of a
more general optimization problem, which they called the maximal seminorm problem. The maximal
seminorm problem is as follows:

Problem 5.3.1 (Maximal Seminorm Problem [Tys10]). Let V be a linear (real or complex) space
equipped with a semidefinite inner product ⟨·, ·⟩ : V × V → V , and consider the seminorm induced
by this semidefinite inner product on V . Let S ⊆ V . Find an element of S which is maximal with
respect to this seminorm.

He suggested an iterative algorithm, called the directional iteration, as the consecutive applica-
tions of the following update rule:

Definition 5.3.2 (Directional Iteration [Tys10]). A directional iterate of v ∈ V , is an element v(+) ∈ S
such that v(+) ∈ argmaxs∈Sℜ⟨s,v⟩.

A directional iterate of an element is not necessarily unique. In the rest of this chapter, we denote
the set-valued function mapping v to the set of its directional iterates by D : V → 2S , i.e. v(+) ∈ D(v)
for all v ∈ V .

To better understand the directional iteration, let us compare it to the Frank-Wolfe algorithm
[Pok24], which might appear quite similar at first glance. Assume that ⟨·, ·⟩ is an inner product.
Define f : V → R as f (v) = ∥v∥2. Then, we have

⟨∇f (v),s⟩ =
d
dt

∣∣∣∣∣
t=0

f (v + ts) = 2ℜ⟨s,v⟩, (5.21)

which indicates that the directional iterate of v is the element s ∈ S that maximizes the inner product

⟨∇f (v),s⟩, where f (v) def== ∥v∥2.
This may remind the reader of the Frank-Wolfe algorithm, as the general idea behind both al-

gorithms is indeed similar. However, there are significant differences between Tyson’s directional
iteration and the Frank-Wolfe algorithm. For instance, the Frank-Wolfe algorithm is typically ap-
plied to convex optimization problems, whereas the problem Tyson considered is not necessarily
convex. Specifically, the constraint set S in Problem 5.3.1 is not necessarily convex.

JRF Algorithm as a Directional Iteration

In this Section, we show how the JRF Algorithm for quantum guessing games, introduced in Section
5.1 can be seen as a directional iteration. This was shown by Tyson in [Tys10] in the case of quantum
state discrimination. For the moment, consider the quantum guessing games in their most general
form, without any further assumptions on the ensembles nor reward matrices.

Example 5.3.3 (Quantum Guessing Games as Maximal Seminorm Problems). Let V = L(Cd)
L

be
the space of L-tuples of operators acting on Cd . For two vectors of operators E = {Ek}k∈[L] ∈ V and
F = {Fk}k∈[L] ∈ V and a quantum guessing game G = (E ,RL×N ), we define the semidefinite inner
⟨·, ·⟩G : V ×V → V as

⟨E,F⟩G
def==

L∑
i=1

N∑
j=1

Rij tr(E†i Fi ρ̃j ). (5.22)

Define SG
def== {E ∈ V |

∑L
i=1E

†
i Ei = 1d}. This way, we have Ropt = maxE∈SG ∥E∥

2
G. Now it is clear that

the task of finding the optimal success probability of discriminating between the states of a quantum
ensemble is a special case of the maximal seminorm problem. The elements of the set SG are known
as the generalised quantum measurements.

Remark 5.3.4. Under the further assumption that the ensemble is full-rank and the reward matrix
R has no rows identical to zero, the semidefinite inner product in Example 5.3.3 turns into an inner
product (See Proposition A.1.7), and Problem 5.3.1 will become a norm maximization problem.
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Remark 5.3.5. The set of generalized quantum measurements SG is a compact set, as it is bounded,
since for any quantum guessing game G = (E ,RL×N ) that ∥ · ∥2G is a norm,

sup
E∈SG
∥E∥2G ≤ 1,

and it is closed, as SG is the pre-image of the closed set {1d} under the continuous map E 7→
∑L
i=1E

†
i Ei .

However, SG is not convex.

Now, we can show how the JRF algorithm can be related to the directional iteration. As we will
see, a sequence generated by the JRF algorithm is a possible sequence of directional iterations. This
was first shown in [Tys10, Theorem 24] for the QSD problem, and we present it here for quantum
guessing games. Hereafter, we again make the assumption on the games we consider that their
ensembles are full-rank and their reward matrices have no rows identical to zero.

Proposition 5.3.6. Let G = (E ,RL×N ) be a quantum guessing game, and consider the maximal norm
problem introduced in Example 5.3.3. For E ∈ SG, one of the possible directional iterates of E = {Ei}i∈[L],

E(+) = {E(+)
i }i∈[L], is given by

E
(+)
i = Ei

 N∑
j=1

Rij ρ̃j


 L∑
i=1

 N∑
j=1

Rij ρ̃j

E†i Ei
 N∑
j=1

Rij ρ̃j



− 1

2

. (5.23)

Proof. By definition, E(+) ∈ argmaxF∈SGℜ⟨F,E⟩G. Consider the following operators:

VE
def==

L∑
i=1

Ei

 N∑
j=1

Rij ρ̃j

⊗ |i⟩, UF
def==

L∑
i=1

Fi ⊗ |i⟩. (5.24)

Note that

tr(VE
†UF) = tr


 L∑
i=1

 N∑
j=1

Rij ρ̃j

Ei† ⊗ ⟨i|

 L∑
i′=1

Fi′ ⊗ |i′⟩


 (5.25)

= tr

 L∑
i=1

N∑
j=1

Rij ρ̃jEi
†Fi

 = ⟨E,F⟩G, (5.26)

which implies that E(+) ∈ argmaxF∈SGℜ tr(VE
†UE).

Note that for any F ∈ SG, ∥UF∥∞ = 1. On the other hand, from Hölder’s inequality, we know that

max
∥U∥∞≤1

ℜ tr(VE
†U ) = ∥VE∥1, (5.27)

and

VE

(
VE
†VE

)− 1
2 ∈ argmax

∥U∥∞≤1
ℜ tr(VE

†U ). (5.28)

Now, it is easy to see that for F ∈ SG, defined as

Fi
def== Ei

 N∑
j=1

Rij ρ̃j


 L∑
i=1

 N∑
j=1

Rij ρ̃j

E†i Ei
 N∑
j=1

Rij ρ̃j



− 1

2

, (5.29)

we have

UF = VE

(
VE
†VE

)− 1
2 , (5.30)

which completes the proof.



Chapter 5. Iterative Algorithms for Quantum Guessing Games 33

Directional Iteration as a Bregman Minorization

It is easy to see that Tyson’s directional iteration is a special case of MM algorithms. Let us first
convert the constrained optimization in Problem 5.3.1 to an unconstrained optimization, by defining
the function

f (v) def==
{
∥v∥2G v ∈ SG
−∞ v ∈ V \ SG

. (5.31)

The maximum of f is then equal to the optimal value of Problem 5.3.1. Define a surrogate function
g(v|v(k)) as

g(v|v(k)) def==
{
∥v(k)∥2G + 2ℜ⟨v− v(k),v(k)⟩G v ∈ SG
−∞ v ∈ V \ SG

. (5.32)

We see that g is a minorization of f , as

g(v|v(k)) = ∥v(k)∥2G + 2ℜ⟨v− v(k),v(k)⟩G ≤ ∥v∥2G = f (v), (5.33)

and g(v(k)|v(k)) = ∥v(k)∥2G = f (v(k)). Note that the maximization of the surrogate function g(v|v(k)) is
equivalent to maximizing ℜ⟨v,v(k)⟩G subject to v ∈ SG. This is exactly the definition of the direc-
tional iterate. Thus, the directional iteration is a special case of the MM algorithms.

Since for a sequence {v(k)} generated by an MM algorithm, we have f (v(k)) ≤ f (v(k+1)), and we
showed that the directional iteration is an MM algorithm, the sequence {∥v(k)∥2G} generated by the
directional iteration is non-decreasing. It is, however, possible to obtain a stronger result for the
directional iteration:

Proposition 5.3.7 ([Tys10, Lemma 7]). For a sequence {v(k)} generated by the directional iteration, we
have

∥v(k+1)∥2G ≥ ∥v
(k)∥2G + ∥v(k+1) − v(k)∥2G. (5.34)

Proof. We have

∥v(k+1)∥2G = ∥v(k) + (v(k+1) − v(k))∥2G (5.35)

= ∥v(k)∥2G + ∥v(k+1) − v(k)∥2G + 2ℜ⟨v(k),v(k+1) − v(k)⟩G, (5.36)

and since from the definition of the directional iterate, we have

ℜ⟨v(k),v(k+1)⟩G ≥ℜ⟨v(k),v(k)⟩G, (5.37)

(5.34) follows.

Hereafter, we will limit ourselves to guessing games with full-rank ensembles, where the reward
matrices have no row identical to zero.

Corollary 5.3.8. Let {M(k)} be a sequence generated by the JRF algorithm, where M(k) = {(E(k)
i )
†
E

(k)
i }i∈[L],

and

E
(k+1)
i = E(k)

i

 N∑
j=1

Rij ρ̃j


 L∑
i=1

 N∑
j=1

Rij ρ̃j

 (E(k)
i )
†
E

(k)
i

 N∑
j=1

Rij ρ̃j



− 1

2

. (5.38)

As shown above, RM(k) = ∥E(k)∥2G. The reward sequence {RM(k) } is non-decreasing and bounded, thus it
converges. From Proposition 5.3.7, and knowing that

lim
k→∞
∥E(k+1)∥2G − ∥E

(k)∥2G = 0, (5.39)

we conclude that the sequence {∥E(k+1) − E(k)∥2G} converges to zero. From this, together with the fact that
{∥E(k)∥2G} is convergent, it is implied that the sequence {E(k)} is a Cauchy sequence, and since SG is a compact
subset of the complete space V , the sequence {E(k)} converges to an element of SG. This implies that the JRF
iterations are also convergent to a POVM.

The surrogate function g(v|v(k)) in (5.32) is in fact an example of a class of minorization functions
known as Bregman minorizations. Bregman minorization utilizes the Bregman divergence to define
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the surrogate function. The Bregman divergence is a measure of the difference between two points
in a space, defined with respect to a convex function, as illustrated in Figure 5.3.

Definition 5.3.9 (Bregman Divergence [Teb18]). Let V be an inner product space and φ : V →
[−∞,∞] be a Legendre function. The Bregman divergence associated to φ, which is denoted by
Dφ : domφ× intdomφ→ R+, is defined as

Dφ(x∥y) def== φ(x)−φ(y)− ⟨∇φ(y),x− y⟩. (5.40)

Proposition 5.3.10. Let Dφ be the Bregman divergence associated to a Legendre function φ. Then, for any
x,y ∈ V , we have

1. Dφ(x∥y) ≥ 0,

2. Dφ(x∥y) = 0 if and only if x = y.

Proof. Note that φ is a Legendre function and in particular a strictly convex function differentiable
on intdomφ. Convexity of the differentiable function φ implies that

φ(x) ≥ φ(y) + ⟨∇φ(y),x− y⟩, (5.41)

and the statement follows from this inequality.

Using the Bregman divergence, one can define a surrogate function g(x|x(k)) for maximizing f (x)
as follows [Lan16]:

g(x|x(k)) def== f (x)−Dφ(x∥x(k)). (5.42)

From Proposition 5.3.10, it is clear that g(x|x(k)) ≤ f (x) for all x, and g(x(k)|x(k)) = f (x(k)). Thus, the
function g(x|x(k)) is a minorization of f (x). Note that for using the Bregman divergence in construct-
ing a surrogate function, we implicitely assume that at each iteration, x(k) ∈ intdomφ (as noted in
[Byr08]).

Example 5.3.11. For a quantum guessing game G = (E ,RL×N ), let φG : L(Cd)
L → R be the function

defined as
φG(x) def== ∥x∥2G, (5.43)

where ∥ · ∥2G is the norm induced by the inner product defined in Example 5.3.3. Let ⟨·, ·⟩ be the

real-valued inner product on L(Cd)
L

defined as

⟨x,y⟩ def==ℜ⟨x,y⟩G. (5.44)

The function φG is a Legendre function, and the Bregman divergence associated to φG is

DφG (x∥y) = ∥x∥2G − ∥y∥
2
G −ℜ⟨2y,x− y⟩G. (5.45)

Dφ(x∥y)

xy

φ(z)
φ(y) +φ′(y)(z − y)

Figure 5.5: Illustration of the
Bregman divergence Dφ(x∥y)
associated to a Legendre func-

tion φ : R→ R.
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We can now use the Bregman divergence defined in Example 5.3.11 to obtain a surrogate function
for the objective

f (v) =
{
∥v∥2G v ∈ SE ,
−∞ v ∈ V \ SG.

(5.46)

Rewriting (5.42) for this function, we obtain

g(v|v(k)) def== f (v)− ∥v∥2G + ∥v(k)∥2G +ℜ⟨2v(k),v− v(k)⟩G (5.47)

=
{
∥v(k)∥2G + 2ℜ⟨v− v(k),v(k)⟩G, v ∈ SG
−∞ v ∈ V \ SG.

(5.48)

This way, we see that the surrogate function defined in (5.32) is indeed a Bregman minorization for
the function f (v).

Remark 5.3.12. In [Byr08], the author introduces a condition, called the SUMMA condition, un-
der which the global convergence of MM algorithms is guaranteed. The SUMMA condition for a
minorization-maximization algorithm can be expressed as

g(x(k+1)|x(k))− g(x|x(k)) ≥ f (x)− g(x|x(k+1)). (5.49)

It is proven in [Byr08] that if p∗ = supx∈S f (x) is finite and the SUMMA condition (5.49) holds, then
limk→∞ f (x(k)) = p∗. Moreover, it is shown in [Byr08] and in a more general setting in [Lan16] that the
SUMMA condition holds for Bregman minorizations for maximizing concave functions. The latter
result, however, can not be applied to our case, as the function f defined in (5.46) is not concave.

5.4 Fixed-point Analysis

Fixed-point theory plays a crucial role in the development and analysis of iterative algorithms. In
particular, as mentioned in Section 5.1, if the JRF iterations converge to a fixed-point of the update
rule, the limit will satisfy a necessary optimality condition. Therefore, to analyse the convergence of
the JRF algorithm, it is helpful to study the fixed-points of the iterations we have discussed so far.

For simplicity, the following discussion is limited to the QSD problem over full-rank ensembles.
We consider fixed-points of three maps:

• the directional iteration map D for the maximal norm problem

max
E∈SG
∥E∥2E , (5.50)

where ∥E∥2E
def==

∑N
i=1 tr(E†i Ei ρ̃i), and SG is the set of generalized measurements,

• the map E = {Ei}i∈[N ]
DJRF7→ E(+) = {E(+)

i }i∈[N ] where

E
(+)
i = Ei ρ̃i

 N∑
i=1

ρ̃iE
†
i Ei ρ̃i


− 1

2

, (5.51)

• the JRF iteration map T defined as

T (M) =
⊕
i

 N∑
i=1

ρ̃iMi ρ̃i


− 1

2

ρ̃iMi ρ̃i

 N∑
i=1

ρ̃iMi ρ̃i


− 1

2

. (5.52)

We saw earlier that DJRF maps E to a directional iteration of E, meaning that DJRF(E) ∈ D(E). Thus,
the fixed-points of DJRF are also fixed-points of D.
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On the Fixed-points of the JRF Iteration

Proposition 5.4.1. Let M = {Mi}i∈[N ] be an optimal measurement for the QSD problem over E. Then, M
is a fixed-point of the JRF iteration, i.e. M = T (M).

Proof. We need to show that for all i ∈ [N ], we have

Mi =

 N∑
i=1

ρ̃iMi ρ̃i


− 1

2

ρ̃iMi ρ̃i

 N∑
i=1

ρ̃iMi ρ̃i


− 1

2

. (5.53)

Recall from Proposition 4.2.4 that for an optimal measurement M, we have N∑
i=1

Mi ρ̃i

Mi = ρ̃iMi , (5.54)

for all i ∈ [N ], or equivalently

Mi =

 N∑
i=1

Mi ρ̃i


−1

ρ̃iMi . (5.55)

Left-multiplying both sides of (5.54) by ρ̃i , and summing over i, we obtain N∑
i=1

ρ̃iMi


2

=
N∑
i=1

ρ̃iMi ρ̃i . (5.56)

Thus, we have N∑
i=1

ρ̃iMi ρ̃i


− 1

2

ρ̃iMi ρ̃i

 N∑
i=1

ρ̃iMi ρ̃i


− 1

2

=

 N∑
i=1

ρ̃iMi


−1

ρ̃iMi ρ̃i

 N∑
i=1

ρ̃iMi


−1

(5.57)

=Mi ρ̃i

 N∑
i=1

ρ̃iMi ρ̃i


−1

(5.58)

=Mi , (5.59)

where the second line follows from (5.55), and the third line follows from taking the adjoint of the
both sides of (5.55).

On the Fixed-points of the Directional Iteration

Proposition 5.4.2. Let V be a linear space equipped with an inner product ⟨·, ·⟩, and let S ⊆ V be a compact
set. Let D : V → 2S be the set-valued function mapping v to the set of its directional iterates. Then, for any
sequence {v(k)} generated by the directional iteration, {v(k)} converges to v∗ ∈ S, where v∗ is a fixed-point of
the directional iteration, i.e. v∗ ∈ D(v∗).

Proof. The proof is similar to the proof of [FKP21, Theprem 1]. First, note that f (v) = ∥v∥2 is a
continuous function, and since S is compact, f attains its maximum on S. Let p∗ = maxv∈S ∥v∥2.

For a sequence {v(k)} generated by the directional iteration, the sequence {∥v(k)∥2} is bounded,
and by Proposition 5.3.7, is non-decreasing. Therefore, it is convergent. By a similar argument as
what we have done in Corollary 5.3.6, it can be implied that the sequence {v(k)} is convergent. If
limk→∞v(k) = v∗, then since limk→∞ ∥v(k)∥2 = p∗ and ∥ · ∥2 is continuous, we have ∥v∗∥2 = p∗.

Now, we can show that v∗ is a fixed-point of the directional iteration map. Assume that v∗ <D(v∗).
Then, for all (v∗)(+) ∈ D(v∗), we have

ℜ⟨(v∗)(+),v∗⟩ >ℜ⟨v∗,v∗⟩ = p∗. (5.60)
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Since {v(k)} converges to v∗, andℜ⟨·, ·⟩ is continuous in its both arguments, there exists k0 such that
for all k > k0, we have,

ℜ⟨(v∗)(+),v(k)⟩ >ℜ⟨v∗,v∗⟩. (5.61)

Moreover, from the definition of the directional iteration, we have

ℜ⟨v(k+1),v(k)⟩ ≥ℜ⟨(v(∗))
(+)
,v(k)⟩, (5.62)

and from ∥v(k+1) − v(k)∥2 ≥ 0, we have

ℜ⟨v(k+1),v(k+1)⟩ ≥ℜ⟨v(k+1),v(k)⟩. (5.63)

Inequalities (5.61), (5.62) and (5.63) together imply that for all k > k0,

∥v(k+1)∥2 =ℜ⟨v(k+1),v(k+1)⟩ > p∗, (5.64)

which is a contradiction.

Corollary 5.4.3. Consider a sequence of JRF iterations {M(k)}, where M(0)
i = E(0)

i

†
E

(0)
i . For k ∈ N, M(k)

i =

E
(k)
i

†
E

(k)
i , where

E
(k+1)
i = E(k)

i ρ̃i

 N∑
i=1

ρ̃iE
(k)
i

†
E

(k)
i ρ̃i


− 1

2

. (5.65)

As we saw in Proposition 5.3.6, the sequence {E(k)} is a sequence of directional iterations for Problem (5.50).
Since the set of generalized quantum measurements SG is compact, as a consequence of Proposition 5.4.2,
the sequence {E(k)} converges to a fixed-point of the directional iteration. Moreover, since the mapping
E = {Ei}i∈[N ] 7→ M = {E†i Ei}i∈[N ] is continuous, it is implied that the sequence {M(k)} is convergent to a
POVM which is the image of E under the mapping E = {Ei}i∈[N ] 7→M = {E†i Ei}i∈[N ], and E is a fixed-point
of the directional iteration.

Proposition 5.4.4. The set of limit-points of a sequence of directional iterations for Problem (5.50) is
connected.

To prove the above proposition, let us recall a well-known result from basic analysis.

Lemma 5.4.5 ([AA70, Theorem 1]). Let X be a compact metric space, and {xk} be a sequence of points in
X such that

lim
k→∞

d(xk ,xk+1) = 0. (5.66)

Then, the set of limit-points of the sequence {xk} is connected.

Proof of Proposition 5.4.4. The proof is a direct implication of Lemma 5.4.5, noting that from Remark
5.3.8, we have

lim
k→∞
∥E(k+1) −E(k)∥2G = 0. (5.67)

On the Fixed-points of DJRF

Let us consider the sequence {E(k)} of directional iterations, discussed in Corollary 5.4.3. We showed
that limk→∞E(k) = E, where E ∈ D(E).

Conjecture 5.4.6. The map F = {Fi}i∈[N ] 7→
(∑N

i=1 ρ̃iF
†
i Fi ρ̃i

)− 1
2 is not singular at E.

Assume that the above conjecture is true. Then, DJRF is continuous at E. From limk→∞E(k) = E
and the assumption that the conjecture holds, it is implied that ∥DJRF(E)∥2E = ∥E∥2E , and then using
Proposition 5.3.7, we conclude DJRF(E) = E.
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Now, let M = {Mi}i∈[N ] be the image of E under E = {Ei}i∈[N ] 7→M = {E†i Ei}i∈[N ]. Recall that M is
the limit of the JRF sequence. Since E is a fixed-point of DJRF,

Ei = Ei ρ̃i

 N∑
i=1

ρ̃iE
†
i Ei ρ̃i


− 1

2

. (5.68)

Therefore,

Mi = E†i Ei ρ̃i

 N∑
i=1

ρ̃iE
†
i Ei ρ̃i


− 1

2

=Mi ρ̃i

 N∑
i=1

ρ̃iMi ρ̃i


− 1

2

. (5.69)

Similarly, we obtain

Mi =

 N∑
i=1

ρ̃iMi ρ̃i


− 1

2

ρ̃iMi . (5.70)

If we have (5.69) and (5.70), we will be only one step away from proving the convergence of the
JRF algorithm. Note that (5.69) can be written as

Mi

 N∑
i=1

ρ̃iMi ρ̃i


1
2

=Mi ρ̃i . (5.71)

Recall from Proposition 4.2.4 that M is an optimal measurement if
(∑N

i=1 ρ̃iMi ρ̃i
) 1

2 is Hermitian and
for all i ∈ [N ], we have  N∑

i=1

ρ̃iMi ρ̃i


− 1

2

≥ ρ̃i . (5.72)

Hermiticity of
(∑N

i=1 ρ̃iMi ρ̃i
) 1

2 is clear. If the conjecture holds, and if we prove (5.72) for all i ∈ [N ],
then the convergence of the JRF algorithm will immediately be implied.
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Chapter 6

Conclusion and Future Works

Conclusion In this thesis, we studied quantum guessing games, a generalisation of two well-
studied problems in quantum information theory, namely quantum state discrimination and quan-
tum state antidiscrimination. Both these special cases, and in general quantum guessing games,
arise in many quantum information theoretic scenarios, which motivates their study. The present
work consists of two main parts. In the first part, which includes Chapters 2, 3 and 4, we investi-
gated properties of quantum guessing games trying to generalize the known results in the special
cases and understand the similarities and differences between different quantum guessing games. A
fundamental result that was previously known in special cases and was proved for a more general
case in this thesis is that quantum guessing games can be reduced to quantum state discrimination
problems.

Having this reduction, several known results about quantum state discrimination can be directly
extended to quantum guessing games. The existence of closed-form solutions for the optimal reward
of guessing games with two possible guesses, the pretty good measurement and lower bounds on
its expected reward, and the derivation of optimality conditions from the SDP formulation of the
problem are examples of such direct extensions that were investigated in our work. On the other
hand, there are properties that can not be directly extended to quantum guessing games and differ
across games, for example the notion of perfectness, which we discuss for state discrimination and
antidiscrimination.

The second part, which is presented in Chapter 5, is devoted to the study of iterative algorithms
for quantum guessing games, particularly for quantum state discrimination. We focused on an algo-
rithm proposed by Ježek, Řeháček, and Fiurášek [JŘF02], for which the authors numerically observed
the convergence, but a proof has not yet been found. We investigated how this algorithm can be re-
lated to other optimization algorithms for which convergence has been studied in the literature of
mathematical optimization. Moreover, by analysing the fixed-points of the algorithm and one of its
counterparts, we addressed a possible direction for proving the convergence, which can be a poten-
tial direction for future works.

In more detail, the author’s contributions presented in this thesis are as follows.

1. In Section 2.2, we derived a standard form for quantum guessing games, such that every quan-
tum guessing game can be reduced to this standard form.

2. Using this standard form, in Section 2.2.1, we showed how quantum guessing games can be
reduced to the quantum state discrimination problem.

3. Using the reduction to QSD, in Remark 2.3.6, we obtained a closed-form solution for quantum
guessing games with only two possible guesses.

4. In Section 2.4, we discussed two quantum information theoretic scenarios in which quantum
guessing games naturally arise.

5. In Section 3.1, we generalized the pretty good measurement, previously introduced and stud-
ied for the QSD problem, and the pretty bad measurement, recently introduced by McIrvin,
Mohan, and Sikora [MMS24] to the more general setting of quantum guessing games.

6. In Section 3.1.1, we derived two lower bounds for the reward of our generalized pretty good
measurements. The first bound, which is given in Proposition 3.1.4, extends the bound proven
in [MMS24] and shows that the generalized pretty good measurement is at least as good as
uniform guessing. The second bound proven in Proposition 3.1.6 extends the bound proven in
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[BK02] and provides an upper bound for the optimal reward in terms of the expected reward
of the pretty good measurement.

7. In Remark 3.1.5, we gave an alternative proof for [MMS24, Theorem 1] in the case of pure state
ensembles.

8. In Section 5.1, we generalized the iterative algorithm proposed by Ježek, Řeháček, and Fi-
urášek [JŘF02] to the setting of quantum guessing games. Our derivation is simpler than the
one in [JŘF02], as we use the complementary slackness to define the fixed point iteration.

9. In Section 5.1, we also provide numerical results suggesting the convergence of our generalized
algorithm. Moreover, we provide numerical comparisons between the runtime of the iterative
algorithm and the SDP solver.

10. In Section 5.3, we provide an in-depth study of the directional iteration proposed by Tyson
[Tys10], and we show how the JRF algorithm for quantum guessing games can be related to the
directional iteration extending the results in [Tys10]. We then provide a Bregman minorization
view of the directional iteration through which the JRF algorithm can be related to a well-
known class of iterative optimization methods known as MM algorithms. Additionally, we
address some hurdles in applying the known results about the global convergence of MM
algorithms to the JRF algorithm.

11. In Section 5.4, we study fixed points of three maps discussed throughout Chapter 5. We show
that any sequence of directional iterations when the feasible set is compact is convergent to
a fixed point of the directional iteration. We then relate the fixed points of these three maps
by proposing a conjecture. We study some implications of this conjecture and show that if
the conjecture is proved, we will be one step away from proving the convergence of the JRF
algorithm.

Future Work Some of the potential directions for future work are as follows:

1. One direction is investigating which quantum guessing games naturally arise in quantum the-
ory, particularly in quantum information. We presented some examples in this work, but
finding more examples will deepen our understanding of quantum guessing games and their
similarities and differences.

2. Finding upper and lower bounds on the optimal reward of quantum guessing games that are
not direct extensions of the known bound for the QSD problem is another possible direction of
work. This can also be investigated for a specific game, e.g. quantum state antidiscrimination.

3. A proof of convergence for the JRF algorithm is still missing. In the last part of the thesis,
we addressed a potential trajectory of steps that may lead to a proof. It is also interesting to
study the connection between the iterative methods discussed in this thesis and those iterative
algorithms known as the first-order optimization methods, as the behaviour of the two categories
seems to have much in common.
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Appendix A

Preliminaries

A.1 Semidefinite Inner Products and Seminorms

A.1.1 Semidefinite Inner Products

Definition A.1.1. Let V be a vector space over C. A function ⟨·, ·⟩ : V ×V → C is called a semidefinite
inner product if it satisfies the following properties for all v,w,z ∈ V and α,β ∈ C:

1. ⟨v,w⟩ = ⟨w,v⟩,

2. ⟨v,v⟩ ≥ 0,

3. ⟨αv + βw,z⟩ = α⟨v,z⟩+ β⟨w,z⟩.

Remark A.1.2. If we replace the second property in Definition A.1.1 with ⟨v,v⟩ > 0 for all v , 0, then
⟨·, ·⟩ will be an inner product.

Example A.1.3. Let V = L(Cd)
L

be the vector space of L-tuples of operators acting on Cd . For two
vectors E = {Ek}k∈[L] ∈ V and F = {Fk}k∈[L] ∈ V , and a quantum guessing game G = (E ,RL×N ), the
biform ⟨·, ·⟩G is defined as

⟨E,F⟩G
def==

L∑
i=1

N∑
j=1

Rij tr(E†i Fi ρ̃j ). (A.1)

This biform is a semidefinite inner product on V , as:

1. ⟨F,E⟩G =
∑L
i=1

∑N
j=1Rij tr(F†i Ei ρ̃j ) =

∑L
i=1

∑N
j=1Rij tr(E†i Fi ρ̃j ) = ⟨E,F⟩G,

2. ⟨E,E⟩G =
∑L
i=1

∑N
j=1Rij tr(E†i Ei ρ̃j ) ≥ 0, since E†i Ei ≥ 0, ρ̃j ≥ 0, and Rij ≥ 0 for all i, j.

3. ⟨αE+βF,H⟩G =
∑L
i=1

∑N
j=1Rij tr((αEi+βFi)†Hi ρ̃j ) = α⟨E,H⟩G+β⟨F,H⟩G, by linearity of the trace.

Proposition A.1.4 (Cauchy–Schwarz Inequality). Let V be a vector space over C equipped with a semidef-
inite inner product ⟨·, ·⟩. Then, for all v,w ∈ V , we have

|⟨v,w⟩|2 ≤ ⟨v,v⟩⟨w,w⟩. (A.2)

Proof. For any t ∈ C, we have ⟨v + tw,v + tw⟩ ≥ 0 by the definition of a semidefinite inner product.
Suppose that ⟨w,w⟩ , 0. Let t = − ⟨v,w⟩⟨w,w⟩ . Then, we have

0 ≤ ⟨v− ⟨v,w⟩
⟨w,w⟩

w,v− ⟨v,w⟩
⟨w,w⟩

w⟩ (A.3)

= ⟨v,v⟩ − |⟨v,w⟩|
2

⟨w,w⟩
− |⟨v,w⟩|

2

⟨w,w⟩
+
|⟨v,w⟩|2

⟨w,w⟩
(A.4)

= ⟨v,v⟩ − |⟨v,w⟩|
2

⟨w,w⟩
. (A.5)

Rearranging the above inequality, we obtain

|⟨v,w⟩|2 ≤ ⟨v,v⟩⟨w,w⟩. (A.6)
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Now suppose that ⟨w,w⟩ = 0. Let t = −n⟨v,w⟩ for some n ∈ N. Then, we have

0 ≤ ⟨v−n⟨v,w⟩w,v−n⟨v,w⟩w⟩ (A.7)

= ⟨v,v⟩ − 2n|⟨v,w⟩|2. (A.8)

Since (A.8) holds for all n ∈ N, we must have ⟨v,w⟩ = 0. Thus, the inequality |⟨v,w⟩|2 ≤ ⟨v,v⟩⟨w,w⟩
holds in this case as well.

A.1.2 Seminorms

Definition A.1.5. Let V be a vector space over C. A function ∥ · ∥ : V → R is called a seminorm if it
satisfies the following properties for all v,w ∈ V and α ∈ C:

1. ∥αv∥ = |α|∥v∥, and

2. ∥v + w∥ ≤ ∥v∥+ ∥w∥.

Proposition A.1.6. Let ⟨·, ·⟩ be a semidefinite inner product on a vector space V . Then, the function

∥v∥ def==
√
⟨v,v⟩ is a seminorm on V .

Proof. To prove that ∥ · ∥ is a seminorm, we need to show that it satisfies the above two properties.
For all v,w ∈ V and α ∈ C, we have

1. ∥αv∥ =
√
⟨αv,αv⟩ =

√
|α|2⟨v,v⟩ = |α|

√
⟨v,v⟩ = |α|∥v|,

2. We have

∥v + w∥2 = ⟨v + w,v + w⟩ (A.9)

= ⟨v,v⟩+ ⟨w,w⟩+ ⟨v,w⟩+ ⟨w,v⟩ (A.10)

≤ ⟨v,v⟩+ ⟨w,w⟩+ 2|⟨v,w⟩| (A.11)

≤ ⟨v,v⟩+ ⟨w,w⟩+ 2
√
⟨v,v⟩⟨w,w⟩ (A.12)

= (
√
⟨v,v⟩+

√
⟨w,w⟩)2 (A.13)

= (∥v∥+ ∥w∥)2, (A.14)

where (A.12) follows from Proposition A.1.4. Therefore, ∥v + w∥ ≤ ∥v∥+ ∥w∥.

A.1.3 Norms

Proposition A.1.7. Let G = (E ,RL×N ) be a quantum guessing game, such that

1. For all i ∈ [L], there exists j ∈ [N ] such that Ri,j > 0,

2. The ensemble E is full-rank, i.e. ρ̃j > 0 for all j ∈ [N ].

Then the biform ⟨·, ·⟩G, defined in Example A.1.3, is an inner product on V .

Proof. Suppose that ⟨E,E⟩G = 0 for some E ∈ V . Then, we have

L∑
i=1

N∑
j=1

Rij tr(E†i Ei ρ̃j ) = 0. (A.15)

Since Rij ≥ 0, E†i Ei ≥ 0, and ρ̃j > 0 for all i, j, we must have Rij tr(E†i Ei ρ̃j ) = 0 for all i, j. For i ∈ [L], let
ji ∈ [N ] be such that Ri,ji > 0. Then, we have tr(E†i Ei ρ̃ji ) = 0, implying that E†i Ei ρ̃ji = 0. Since ρ̃ji > 0,
we must have E†i Ei = 0, which implies that Ei = 0. Therefore, E = 0, and ⟨·, ·⟩G is an inner product on
V .

Corollary A.1.8. When the premises of Proposition A.1.7 are satisfied, the seminorm ∥ · ∥G defined by

∥E∥G
def==

√
⟨E,E⟩G is a norm on V .
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Proposition A.1.9. For any norm ∥ · ∥ on a vector space V , induced by an inner product ⟨·, ·⟩, the function

φ(v) def== ∥v∥2 is strictly convex, i.e. for all v ,w ∈ V and 0 < λ < 1, we have

φ(λv + (1−λ)w) < λφ(v) + (1−λ)φ(w). (A.16)

Proof. For all v ,w ∈ V and 0 < λ < 1, we have

φ(λv + (1−λ)w) = ∥λv + (1−λ)w∥2 (A.17)

= ⟨λv + (1−λ)w,λv + (1−λ)w⟩ (A.18)

= λ2∥v∥2 + (1−λ)2∥w∥2 +λ(1−λ)2Re⟨v,w⟩ (A.19)

≤ λ2∥v∥2 + (1−λ)2∥w∥2 + 2λ(1−λ)∥v∥∥w∥ (A.20)

= (λ∥v∥+ (1−λ)∥w∥)2 (A.21)

< λ∥v∥2 + (1−λ)∥w∥2 (A.22)

= λφ(v) + (1−λ)φ(w), (A.23)

where (A.20) follows from the Cauchy–Schwarz inequality, and (A.22) follows from the strict con-
vexity of the function x2.

A.2 Convex Analysis

The definitions provided here are taken from [Roc70]. Throughout this section, let V be an inner
product space with inner product ⟨·, ·⟩ and norm ∥ · ∥.

Definition A.2.1 (Epigraph). For a function f : X ⊆ V → [−∞,∞], the epigraph of f is defined as

epif def== {(x, t) ∈ V ×R | x ∈ X , f (x) ≤ t}. (A.24)

Definition A.2.2 (Effective Domain). For a function f : X ⊆ V → [−∞,∞], the effective domain of f is
defined as

domf
def== {x ∈ X | ∃t ∈ R, (x, t) ∈ epif }. (A.25)

Definition A.2.3 (Properness). A function f : X ⊆ V → [−∞,∞] is called proper if domf , ∅ and for
all x ∈ X , f (x) > −∞.

Definition A.2.4 (Lower Semi-Continuity). A function f : X ⊆ V → [−∞,∞] is called lower semi-
continuous if for all x ∈ X , we have

f (x) = liminf
y→x

f (y). (A.26)

Definition A.2.5 (Directional Derivative). Let f : X ⊆ V → [−∞,∞] be a function and x ∈ domf . The
one-sided directional derivative of f at x in the direction d ∈ V is defined as

f ′(x;d) def== lim
t↓0

f (x+ td)− f (x)
t

. (A.27)

The one-sided directional derivative f ′(x;d) is two-sided if f ′(x;d) = −f ′(x;−d) for all d ∈ V .

Definition A.2.6 (Differentiability). Let f : X ⊆ V → [−∞,∞] be a function and x ∈ domf . The
function f is called differentiable at x if there exists a (necessarily unique) vector ∇f (x) ∈ V such that

lim
y→x

f (y)− f (x)− ⟨∇f (x), y − x⟩
∥y − x∥

= 0. (A.28)

Proposition A.2.7. If f is differentiable at x, then for any d , 0, the directional derivative f ′(x;d) exists
and is equal to ⟨∇f (x),d⟩.

Proof. By the Differentiability of f at x, we have

lim
t↓0

f (x+ td)− f (x)− ⟨∇f (x), td⟩
t∥d∥

= 0. (A.29)
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Thus, we have
f ′(x;d)− ⟨∇f (x),d⟩

∥d∥
= 0, (A.30)

which implies that f ′(x;d) = ⟨∇f (x),d⟩.

Example A.2.8. Let V be the vector space introduced in Example 5.3.3, equipped with the real-linear

inner product ⟨x,y⟩ def== Re⟨x,y⟩E . Let f : V → R be a function defined as f (x) def== ∥x∥2E . We have

lim
y→x

∥y∥2E − ∥x∥
2
E −Re⟨2x,y− x⟩E
∥y− x∥E

= lim
y→x

∥y∥2E − ∥x∥
2
E + 2∥x∥2E − 2Re⟨x,y⟩E
∥y− x∥E

(A.31)

= lim
y→x

∥y− x∥2E
∥y− x∥E

= 0, (A.32)

where the last equality follows from the continuity of the norm. Thus, f is differentiable at x with
∇f (x) = 2x.

Definition A.2.9 (Essential Smoothness). A proper convex function f : X ⊆ V → [−∞,∞] is called
essentially smooth if

1. intdomf , ∅,

2. f is differentiable on intdomf ,

3. limi→∞ ∥∇f (xi)∥ =∞ for any sequence {xi} in intdomf converging to the boundary of intdomf .

Definition A.2.10 (Legendre Function). A function f : V → [−∞,∞] is called a Legendre function if it
is proper, lsc, strictly convex, and essentially smooth.
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